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Preface

Erzsébet Csuhaj-Varjú1 and Péter Sziklai2

1Institute of Computer Science, Faculty of Informatics, Eötvös Loránd University ELTE,
Budapest, Hungary

2Institute of Mathematics, Faculty of Science, Eötvös Loránd University ELTE,
Budapest, Hungary

csuhaj@inf.elte.hu, peter.sziklai@ttk.elte.hu

This volume contains extended abstracts of talks presented at “Developments in Computer
Science”, an online conference organized by the Faculty of Informatics and the Institute
of Mathematics of the Faculty of Science, Eötvös Loránd University, Budapest, Hungary
in the period 17 - 19 June, 2021.

The aim of the conference was to provide a forum for presenting current developments,
ongoing works, inspiring ideas in all disciplinary areas of computer science. Researchers,
lecturers working in these fields, as well as PhD and MSc students were encouraged to
participate in the event and to exchange their ideas and results on the topics of the meeting.

The scope of the conference was broad and included topics both from theoretical fields
of computer science and applications. The scientific program was organized in eleven sec-
tions, out of which ten sections were dedicated to specific research fields and one section
was devoted to contributions on a few selected topics. The sections on the specific research
fields consisted of an invited talk and several contributed talks.

In the section “Additive combinatorics and its applications in Computer Science”,
organized by Norbert Hegyvári, an invited talk “Counting monochromatic solutions of the
polynomial Schur equation x+ y = p(z)” was presented by Péter Pál Pach.

Section “Coding theory and applications in cryptology” was organized by György Kiss,
the invited presentation in this section was given by Marcella Takáts on “Secret sharing,
coding theory and finite geometry”.

Section “Combinatorics and Geometry” was organized by Balázs Keszegh, the invited
talk “Crossing lemma for the odd-crossing number and some related problems” was deliv-
ered by Géza Tóth.

In section “Geometric constraint systems: theory and algorithms”, organized by Ti-
bor Jordán, the invited talk “Scene analysis with symmetry” was delivered by Viktória
Kaszanitzky.

Section “Information Systems and Architectures” was organized by Bálint Molnár who
also presented an introductory lecture “Formal approaches to modeling of Information
Systems”.

Section “Neural networks and differential equations” was organized by Péter Simon, the
invited talk “Adaptive numerical approximation of two-point boundary value problems: a
neural network-based approach” was given by Ferenc Izsák.

In section “Numerical solution of differential equations, qualitative properties and ap-
plications”, organized by István Faragó, the invited speaker Róbert Horváth presented
the invited talk with the same title, namely “Numerical solution of differential equations,
qualitative properties and applications”.
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Section “Type Theory” was organized by Ambrus Kaposi, the invited talk in this
section, “Wellfounded and Extensional Ordinals in Homotopy Type Theory” was delivered
by Nicolai Kraus.

In section “The ubiquitous machine learning – bridging science and business”, orga-
nized by András Lukács, the invited talk “Machine learning use cases in manufacturing”
was presented by Szabolcs Biró.

Section “Using artificial intelligence tools in molecular structure prediction: The Bu-
dapest Amyloid Predictor and its applications”, was organized by Vince Grolmusz, and
András Perczel presented the invited talk “The amyloid state of proteins” of the section.

Section “Selected topics” was organized by Erzsébet Csuhaj-Varjú; the five regular
contributions were presented on programming and computation theory.

The conference program started by the plenary talk “On the carriers of information
(formations, infosphere, computation)”, delivered by András Benczúr.

The event was supported by the project “Integrált kutatói utánpótlás-képzési program
az informatika és számı́tástudomány diszciplináris területein”, EFOP 3.6.3-VEKOP-16-
2017-00002, a project co-financed by the Hungarian Government and the European Social
Fund.

The Organizing Committee consisted of Erzsébet Csuhaj-Varjú, Bálint Fügi, Hermina
Molnár, Péter Sziklai and Nóra Tibold. The webpage of the conference was created and
maintained by Gergő Gombos and Péter Vörös, who also contributed to the technical
editing of this volume.

The editors thank the Program Committee, the section organizers, the invited speak-
ers, the authors of the regular contributions, the reviewers, and all the participants who
contributed to the success of the conference.

We thank the Faculty of Informatics and the Institute of Mathematics (Faculty of
Science), Eötvös Loránd University for their support.

Budapest, July 2021

Erzsébet Csuhaj-Varjú and Péter Sziklai
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Norbert Hegyvári: On a Boolean function defined on Number Theoretical struc-
tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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coding theory and finite geometry . . . . . . . . . . . . . . . . . . . . . . . 37
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Péter Ágoston: Semialgebraic sets as ranges of two-distance graphs . . . . . . . 65
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Róbert Horváth: Numerical solution of differential equations, qualitative proper-
ties and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
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Gellért Károlyi and András Lukács: Transfer learning for medical image classifi-
cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
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András Kovács: Staged Compilation and Generativity . . . . . . . . . . . . . . . 223
Section:

Using artificial intelligence tools in molecular structure predic-
tion: The Budapest Amyloid Predictor and its applications . . . . 229

András Perczel: The amyloid state of proteins . . . . . . . . . . . . . . . . . . . 231
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Jianhao Li and Viktória Zsók: Actor Model based Distributed Communication

in Golang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Pramod Kumar Sethy: Notes on P systems versus R systems . . . . . . . . . . . 263
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On the Carriers of Information
(formations, infospher, computation)

András Benczúr

Faculty of Informatics, Eötvös Loránd University
Budapest, Hungary

abenczur@inf.elte.hu

In my presentation, I present the world of information from a specific, new perspective.
I do not attempt to define the concept of information itself, but I base my analysis on the
examination of the carriers of information. The carriers of information are referred to as
formation in the following in order to distinguish and yet refer to information. Formations
are objects that physically exist for shorter, longer periods of time. They occur both in
human brains and as artificial external objects. Artificially created external formations
elevated man to the top of conscious (nervous) beings. Formations are linked to their
meaning during information events. The rich set of formations that can be used in our time
was made possible by the mutually supportive development of our two human abilities:
the ability to rearrange matter and the ability to think and remember. In the possibilities
of rearranging the material, we have now reached the point where – although we cannot
make the material do thinking, but - we can make it perform calculation. Rearranging
matter and thinking come together: some activities of thinking can be done with matter
itself. What is doable can be boldly called computation. The border between thinking and
calculating is yet to be clarified, has provoked much controversy so far, and is expected to
provoke more.

1 Formations and information, information event, the info-
sphere and the information revolution

We briefly review the most important levels of material rearrangement in the evolution
of the world of formations and information. The first three levels, the first, the initial
rearrangement of material in creation of tools and cultural objects, the second, the thinking
and remembering and the third, the pronouncing of a sequence of separable sounds into
sound formations, led to the development of words and language. Words are perceptible
formations and can be considered as encodings with a finite set of symbols. Writing is
the next level, followed by printing, then by a microscope and telescope that refine visual
perceptions. The creation of external formations up to this level required human activity,
the printing only multiplied the formations.

During the last two centuries developed and still is developing the layer of instrumental
perceptions and recordings, in which formations are made about the perceptions, that can
be stored and transmitted. They can then be processed with the means of the next layer.

Last layer, the determinant of our era, brings in the rearrangement of material so that
it rearranges itself to perform the computation. A new artificial active layer is evolving

Developments in Computer Science, Budapest, pages 11 - 15, 2021.
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in exponential pace. The special feature of the new artifact, the computer (computing
machinery), is that the material it transforms is “only” a formation. This also means that
it becomes useful and becomes information only in the case of the appropriate meaning
assigned to the formation. The solution of the assignment is the challenge and task of
informatics.

In the era of the information society and the information revolution, information has got
central role, and the use of the word information became commonplace. However, there
is no accepted unifying definition of information. A model is needed where information
takes meaning from the formation, where the representative of the information and the
meaning itself are present at the same time. We can assume that information does not
exist without material from, it is carried by something, that can be observed / perceived
/ shaped. This carrier is what I have already called a formation. When the formation
is observed / created, then the information appears to the observer / creator and the
meaning is associated to the formation. Based on the introductory preparation, I give a
new definition consisting of a combination of three components.

Definition 1 The information triad is the triple of formation, owner, and meaning. The
role of formation in the triad can be of three kinds: generated, perceived, or emitted. This
triple belongs to a process, happening in time, that I call an information event. Information
in this definition is a timely presence of a formation that the owner can relate to meaning,
to a referenced. The owner either associates a new formation with the referenced, or detects
a formation associated with his referenced, or issues a formation as a replacement for the
referenced.

I give two basic laws:

The first basic law: Different meanings require different formations (distinguishable by
the observer / creator).

The second basic law: Formation detection / creation means information if at the same
time it is possible to detect previously formed formations to which the meaning is linked.

The second basic law introduces the time dependence of information and the quality of
understanding and utilization. Semantic modeling should take this into account as well.
This applies to information events in both the human and artificial spheres.

The most important information events are related to activity of human consciousness.
The human mind is the owner. Formations can be internal structures of the brain (internal-
formations) and can be external, materialized structures (external-formations). Brain for-
mations within the consciousness should also be perceived, and conscious movements can
also be considered referenced. Such is our mental inner world, our emotions, our thoughts.
The length of the information event is not limited, complex formations are possible, sev-
eral owners can participate in it at the same time. Persistent or repeatable formations
allow for communities to assign meaning to them with consensus. The accumulation of
such formations provides the community with a collection of information. The information
events of the artificial world are based on preceding human information events.

András Benczúr
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By focusing on material rearrangement in the introduction, I wanted to support that
the accumulation of information is embodied in physically existing media, which means
collections of formations. What does the current stock consist of? From the individual
sets in the consciousness of the living people and from the stock of objectified, external
formations. More and more advanced systems and information technologies have been
developed for accessing, processing, distributing and operating these stocks. Together with
the collection of formations, they form the infosphere. However, formations only become
information during an information event, so the meaning ultimately always appears in
human consciousness.

Construction based on formations and information events does not define the concept of
information. It captures in what form and during what event the information is present.
Further definition and classification of information can refer to the specific sets and struc-
tures of the formations used / usable, to the situations of information events and to the
types of phenomena represented. Alternatively, we can approach some specificity of infor-
mation from all three components. After a general presentation of formations, information
events, and the accumulation of information, I turn to characterizing the new information
world of our era; the new infosphere. The infosphere, like the biosphere, is extremely rich
and diverse. The digital universe is currently at the peak of this development. The entire
infosphere is brought to life at all times by the information carriers of the individual (living
consciousness). What is the essence of the new information revolution? Before the world of
computers, the external representations and fixed forms of information were passive, they
did not undergo transformation, at most they wore out, deteriorated. They could trig-
ger activity and they could be used to produce additional information only after human
perception. However, the formations that have entered the data world of computers can
be transformed during the execution of implemented algorithms and programs without
human intervention, and can also influence the operation of artificial objects. This will
lead to a new revolutionary development of the infosphere, including the construction of
the digital universe and the connection of more and more elements of everyday life.

2 Formations, computation and informatics

The utilization, use, transformation and processing of information has long been only
through human consciousness. This field has been revolutionarily changed by the comput-
ing machines and the digital world. In Part 2 the strong interrelationship of computation
and information is dealt with. The novelty of the presentation is given by the analysis
based on the formations and the information events.

There are two kinds of formations in the infosphere: artificial outer/ex-formations and nat-
ural inner/in-formations. The permanent task to be solved is: how to get information from
the collections of artificial physical formations? In solving the problem, two periods can be
distinguished: the period before the computation and the period after the computation.
(Before Computation and After Computation).

In the BC era the basic solution is: one has to find and access the carriers (clay and
paper) of relevant set of formations, observe (read), understand and extract the necessary
information.

On the Carriers of Information (formations, infospher, computation)
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There is a daily flood of formation that reaches everyone. The most important category is
the set of formations not intended for immediate consumption or communication. These
formations are carried by physical medium that have been physically existing from the
time they were created. These are collected in formation repositories. (Libraries, document
collections, records, archives, etc.) Supporting access to the formation relevant to a ques-
tion additional formations are necessary for access and content relationships (catalogs,
thesaurus, indexes). These are also added to the set of formation carriers. This is what
LIS (Library and Information Science) is all about.

In the post-computational (AC) era, we have come to the point where overhelming and
growing proportion of external formations exist digitally somewhere in computer systems
connected to the global Net. The Digital Universe has been built, with the data sphere
representing the data world, according to the latest name of the IDC study. IDC has
defined three primary locations where digitization is happening and where digital content
is created: the core (traditional and cloud datacenters), the edge (enterprise-hardened
infrastructure like cell towers and branch offices), and the endpoints (PCs, smart phones,
and IoT devices). The summation of all this data, whether it is created, captured, or
replicated, is called the Global Datasphere, and it is experiencing tremendous growth.
IDC predicts that the Global Datasphere will grow from 33 Zettabytes (ZB) in 2018 to
175 ZB by 2025.

Capabilities of computation, which was well-known and used for ages, extended over dig-
ital signs, furthermore computation can be carried out by machines. This is the point
where the two components of information (Formation, Referent) can be connected to the
computation. Suppose, that some other properties of the represented entity can be in-
ferred from the available information. As the result of formal reasoning we can get a valid
representation of not observed properties. It was done previously only by mental processes
- nowadays, by machine computation. However, we can obtain such a result for a problem
which have computational model that was created by us. Thinking and computation are
processes developing in space and time, they work with formations, typically observable
at the beginning and at the end. As physically existing events, they are carrying new ob-
servable information. Extracting meaning is the duty of the observer. This process is the
resolution of Denning’ and Bell’s Paradox: How can machines that work independently of
meaning generate meaning for observers? Where does the new information come from?

Thinking and computation are processes that unfold in space and time, with formations
that are typically observed at the beginning and end. They carry new information as
physically existing events. As a new observation of the resulting formation, the owner can
associate the meaning to it, so this is new information. The novelty of this information
usually depends on the complexity of the calculation.

P. Denning gave a definition for the computation with representations. I rephrase this
using formations instead of representations, which brings computing closer to the world
of information.

I make some note on the mathematical definition of computation, what is based on the
Turing-machine and the Church-Turing thesis. Whether the axiom of computation can

András Benczúr
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be based on a Turing-machine is disputed by others, supported by examples of inter-
active algorithms, continuously operating on-line algorithms, distributed systems. New
computational capabilities, such as parallel, interactive, continuous computations, do not
correspond to the uninterrupted operation of a Turing-machine, but they can be imple-
mented by using Turing-automata for non-exclusive tape use. In this sense, I extend the
CT-thesis to Turing-automata.

A short description is given of the main models of mathematical information theory from
the perspective of efficient management of formations and information events. I point out
that the metrics of information (Shannon entropy, Kolmogorov entropy) are related to
the choice of formation sets and systems, with their ability to briefly describe the sets
and structures of the possible referents. I discuss the role of the universal Turing machine
in algorithmic information theory. I present the phenomenon of the growing data gap
associated with the growth of the data sphere by modeling the query process between
man and computer.

3 Summary

In my presentation, starting from the human possibilities of material rearrangement and
thinking, I directed attention to the material manifestations of information. The introduc-
tion of formations can make visible the boundary between the information construction
of humanity and the complex processes of nature. The set of formations that physically
exist at any time and the set of systems that ensure its use make up the infosphere of
humanity. The infosphere is a product of the biosphere, it would not exist without it, since
there would be no human being outside the biosphere. And today’s age represents a new
evolutional step in building the infosphere with the new digitization and mechanization of
computing.

All this leads to the emergence of new science. The new development of the infosphere al-
ready requires its own field of science, it can be informatics, and as a discipline Informatical
Sciences, similarly to mathematics and Mathematical Sciences.
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Abstract

We discuss the Ramsey problem for {x, y, z : x + y = p(z)} for all polynomials p
over Z.

Under the assumption that p(1)p(2) is even we show that x + y = p(z) is 2-
Ramsey. Indeed, we show that the number of monochromatic solutions with x, y, z ∈
{1, 2, . . . , n} is at least n2/d

3−o(1), where d = deg p. On the other hand, there exists

a 2-colouring for which the number of monochromatic solutions is at most n2/d
2

.
Furthermore, in almost all of the cases we can improve the lower bound to n2/d

2−o(1).
On the other hand, when p(1)p(2) is odd, that is, when p attains only odd values,

then there might not be any monochromatic solution, for instance, this is the case
when we colour the integers according to their parity. We give a characterization of
all 2-colourings avoiding monochromatic solutions to x+ y = p(z).

The talk is based on joint work with Liu and Sándor and with Kim and Liu.

1 Introduction

The study of arithmetic Ramsey theory searches for monochromatic patterns in finite
colourings of N. A pattern is k-Ramsey, if it appears infinitely often in any k-colouring
of N. Ramsey theory has a long history dating back to the famous theorem of Schur in
1916, which states that the equation x+ y = z is Ramsey, that is, any finite colouring of
N contains infinitely many monochromatic solutions to x + y = z. Note that it is wide
open whether the Pythagorean equation x2 + y2 = z2 is also Ramsey. Heule, Kullmann
and Marek [4] gave a computer-assisted proof (of size 200 terabytes!) that x2 + y2 = z2

is 2-Ramsey, in fact any 2-colouring of {1, 2, . . . , 7825} admits a monochromatic solution,
while {1, 2, . . . , 7824} can be 2-coloured avoiding monochromatic solutions. However, it is
still open whether each 3-colouring of N admits a monochromatic solution.

Another classical example is van der Waerden’s theorem [7] stating that {x, x +
y, . . . , x+(`−1)y} is Ramsey for any ` ∈ N. Rado [6] later in his seminal work resolved the
Ramsey problem for all linear equations, characterising all those that are Ramsey. Since
then, many extensions have been studied, see e.g. the far-reaching polynomial extension
of van der Waerden’s theorem by Bergelson and Leibman [1].

In this talk, we discuss the polynomial extension of Schur’s theorem. Somewhat sur-
prisingly, only a special case of this natural problem has been solved. Csikvári, Gyarmati
and Sárközy [2] showed that x + y = z2 is not 16-Ramsey, that is, they constructed a
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16-colouring of N with no monochromatic solution to x + y = z2 other than the trivial
solution x = y = z = 2. Later, Green and Lindqvist [3] completely resolved this case using
Fourier-analytic arguments, giving the satisfying answer that any 2-colouring of N con-
tains infinitely many monochromatic solutions, while 3 colours suffice to avoid non-trivial
monochromatic solutions. In other words, x + y = z2 is 2-Ramsey, but not 3-Ramsey. In
fact, the 3-colouring in [3] can easily be adapted to show that

x+ y = p(z) is not 3-Ramsey for any p(z) ∈ Z[z] with deg(p) ≥ 2.

The result in [3] also implies that there are at least log logN monochromatic solutions
in [N ] := {1, . . . , N} for any sufficiently large N . On the other hand, there is a greedy
2-colouring with at most N1/2 monochromatic solutions.

The Fourier-analytic proof in [3] actually shows that for any sufficiently large N , there
is a monochromatic solution in the interval [N, cN8] for some large constant c.

Recently, we [5] gave a shorter combinatorial proof for the 2-Ramseyness of x+y = z2,
showing that there is a monochromatic solution to x + y = z2 in the smaller interval
[N, 104N4], and the bound on the interval is optimal up to the constant factor.

Here, we completely resolve the Ramsey problem for

{x, y, z : x+ y = p(z)}

for all polynomials p over Z, thereby establishing a polynomial extension of Schur’s theo-
rem. In particular, we characterise all polynomials that are 2-Ramsey.

2 Results

For polynomials that are 2-Ramsey, we have a quantitative result, giving a lower bound
of the correct shape on the number of monochromatic solutions. Note that the condition
ad > 0 is necessary as otherwise p(z) would eventually take only negative values. The
assumption 2 | p(1)p(2) is also needed, since otherwise p(z) ≡ p(1)p(2) ≡ 1 (mod 2) and
one can 2-colour N by parities to avoid monochromatic solutions.

Theorem 1 (H. Liu, C. Sándor, P. P. Pach) Let p(z) = adz
d + . . .+ a1z + a0 ∈ Z[z]

with d ≥ 1 and ad > 0 such that 2 | p(1)p(2). Let φ be a 2-colouring of [n]. Then the
number of monochromatic solutions {x, y, z} ∈ [n](3) to x+ y = p(z) is at least n2/d

3−o(1).
Moreover, there is a 2-colouring for which the number of monochromatic solutions is only
O(n2/d

2
).

In ongoing work with Kim and Liu we could prove that in fact n2/d
2−o(1) is also a lower

bound for the number of monochromatic solutions when d = 2 or d ≥ 4, that is, only the
degree-3 case remains open.

On the other hand, for polynomials that are not 2-Ramsey, we characterise all 2-
colourings of N that are not 2-Ramsey, showing that all such bad 2-colourings have to
be balanced and periodic. Moreover the sumset of each colour class must have a rigid
structure. It further reveals that a divisibility barrier, generalising the aforementioned
parity obstruction, is the only obstruction to 2-Ramseyness for x+ y = p(z).
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Theorem 2 (H. Liu, C. Sándor, P. P. Pach) Let p(z) = adz
d + . . .+a1z+a0 ∈ Z[z],

with d ≥ 1 and ad > 0. Let φ : N → {−1, 1} be a 2-colouring such that x + y = p(z)
does not have infinitely many monochromatic solutions. Then there exists an even positive
integer m and a partition of Zm into two classes A and B, each of size m/2, such that

φ(x) = −1 if and only if x ∈ A (mod m).

Furthermore, there exists an odd α ∈ Zm such that

A+A = B +B = Zm \ {α},

and for any z ∈ N, we have
p(z) ≡ α (mod m).

Note that if φ and p satisfies the above conditions, then p(z) ≡ α (mod m) for every
z, however, whenever x and y have the same colour x + y 6≡ α (mod m). Thus there is
no monochromatic solution, even trivial ones do not exist. In other words, if x+ y = p(z)
has a trivial solution, such as x = y = z = 2 for x + y = z2, then the polynomial p is
necessarily 2-Ramsey. Therefore, the following corollary is obtained.

Collorary 3 Let p(z) = adz
d + . . . + a1z + a0 ∈ Z[z] with d ≥ 1 and ad > 0 and φ be a

2-colouring of N. Either there is no monochromatic solution for x+ y = p(z), or there are
infinitely many monochromatic solutions.

A special case of the periodic colouring is the one induced by parity and a polynomial
for which p(1)p(2) is always odd. Below is another example illustrating the divisibility
barrier to 2-Ramseyness for x+ y = p(z).

Example. Consider

p(z) = z3 + 3z2 + 2z + 3 = z(z + 1)(z + 2) + 3.

Note that for every z ∈ N,
p(z) ≡ 3 (mod 6).

Colour all numbers that are 2, 3, 5 modulo 6 with one colour, and the rest, 0, 1, 4 modulo
6, with the other colour. One can easily check that any number having residue 3 (mod 6)
cannot be written as a sum of two numbers of the same colour.

3 A brief overview of the methods

We present in this section the proof sketch for Theorem 2: characterising all pairs of
polynomials p and 2-colourings φ such that x+y = p(z) does not have any (or equivalently,
does not have infinitely many) φ-monochromatic solutions (Theorem 2). For the lower
bound on the number of monochromatic solutions in [n] (Theorem 1) similar methods are
used, however, additional difficulties need to be overcome.

Trivially, if there is a “very long” monochromatic interval, then many monochromatic
solutions can be found in it. Thus, we may assume that there will be infinitely many
places where the colour switches. With the help of a simple, but crucial observation we
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can see that whenever a “sufficiently long” block of numbers of one colour is followed by
a sufficiently long block of numbers coloured with the other colour, many monochromatic
solutions can be found. This allows us to assume that the colour switches “frequently”
after some threshold.

When considering a switch k, that is, φ(k) 6= φ(k + 1), we define a subset A = Ak ⊆
Zm(k) (where m = m(k) := p(k + 1) − p(k)) containing at least half of the elements of
Zm. The set A satisfies that whenever z ∈ N is such that (i) p(z) lies in the sumset A+A
(mod m), and (ii) z has the opposite colour of k, then we are able to find a monochromatic
solution. To drop restriction (ii) on the colour of z, we shall use that the colour switches
frequently, according to the above discussion. If k1 and k2 are two consecutive switches,
then clearly φ(k1) = −φ(k2) and either k1 or k2 would have the opposite colour of z.

However, we still need to guarantee (i) that p(z) ∈ A + A (mod m). As A ⊆ Zm

contains at leastm/2 elements, by the pigeon-hole principle A+A = Zm holds if |A| > m/2,
and then p(z) ∈ A + A is automatically satisfied. If |A| = m/2, then the sumset A + A
might not contain all elements of Zm. These cases can be described with the help of a
stability version of the Cauchy-Davenport theorem) and indeed the union of the residue
classes outside of the sumset A+A form a residue class α modulo m′ for some even m′|m.

Now, if we obtain the same α and m′ infinitely often, then this forces the periodic
structure of the colouring and p(z) ≡ α (mod m′) for all z. Otherwise we would get a
sequence m′ → ∞. However, for a fixed polynomial p it is not possible to have p(z) ≡ α
(mod m′) for all z if m′ is sufficiently large. More precisely, with the help of Szemerédi’s
theorem on arithmetic progressions, we prove this for a pair of moduli m′1,m

′
2, as to drop

the condition on φ(z) we work with pairs of switches.
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1 Introduction and Motivation

In the last decades there were several interplay between computer sciences and additive
combinatorics. One of the most interesting example is an additive communication com-
plexity problem which was supported by an example of Behrend on the maximal density
of a set without a three-term arithmetic progression (see e.g. [7]) We investigate a commu-
nication complexity problem which is related to a field in combinatorial number theory;
namely to the topic of subset-sums. The well-known knapsack problem is to determine,
given positive integers y1, y2, . . . , yn and an integer n, whether there is a subset of the
set {yj} that sums up to N . This problem belongs to the class of NP-complete problems.
Certainly this question can be extend to higher dimension too. For any X ⊆ Nk let

FS(X) := {
∞∑

i=1

εixi : xi ∈ X, εi ∈ {0, 1},
∞∑

i=1

εi <∞} (1)

and we have to decide for p ∈ Nk whether p ∈ FS(X) or not.
Let X = A1 × A2 × . . . × Ak ⊆ Nk. The structure of FS(X) in higher dimension was

investigated in [1], [2] and [3].
The set Y ⊆ N is said to be complete if FS(Y ) = N. Let us note that although

FS(Ai) = N then FS(X) does not cover necessary the whole Nk. For example if X =
{2k}∞k=0 × {2m}∞m=0 then (15, 1) 6∈ FS(X), while (15, 1 + 256) ∈ FS(X).

2 A communication complexity problem

we will use number-in-hand multiparty communication model, i.e. there are k players
P1, P2, . . . Pk and a k-argument functions F : ({0, 1}N )k 7→ {0, 1}. For every i ∈ [k] Pi gets
an n-bit input. In the communication process we will use blackboard model where every
message sent by a player is written down on a blackboard which is visible for all players.

The communication complexity of this model, denoted by CC(k)(F ), is the least num-
ber of bits needed to be communicated to compute F correctly.

Assume that we have k players and we assign a regular sequence Ai to each of them.
For a given point p = (p1, p2, . . . , pk) ∈ Nk; pi ≤ N ; (i = 1, 2, . . . , k), the ith players
knows (just) pi and his previously given set Ai. Let X := A1 × . . . × Ak. With minimal
communications they have to decide whether p ∈ FS(X) or not. Denote by F the function
which describes this.
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3 Results

As we indicated X is a cartesian product of certain sets. Namely X := A1 × . . . × Ak,
where for every i = 1, 2, . . . , k

(i) 1 ∈ Ai; (ii) Ai \ {1} ⊆ Ai +Ai; (iii) aj+1 > %aj

In the next we will show that sequences which fulfill conditions (i) and (ii) are complete.

Proposition 1 Let Y ⊆ N be an infinite set and assume that 1 ∈ Y and Y \{1} ⊆ Y +Y .
Then Y is complete. Moreover if Y = {1 = y1 < y2 < . . .} then for every i = 1, 2, . . . we
have yi ≤ 2i−1.

3.1 Regular sequences

For any z ∈ N and X ⊆ N let us denote by r(z) the representations of z from X, i.e.
r(z) := rX(z) = {(η = {ηi}∞i=1) : z =

∑∞
i=1 ηixi, xi ∈ X,

∑∞
i=1 ηi < ∞, ηi ∈ N}.

Note that in this form it is allowed to use an element of X more than once. We are
going to look at shortest representations of n ∈ N and for this we will use the notation
rankY (p) := minη∈rY (p)(

∑
i ηi), i.e. the length of the shortest representation of p from the

set Y. Denote by multY (p, η) the maximal multiplicity of an element in the representation
ε from rY (p). For example if p = a1 + a2 + a2 + a3 + a3 + a3 (η1 = 1, η2 = 2, η3 = 3) then
multA(p, η) = 3

A sequence A is said to be regular if all numbers n have a shortest representation which
has multiplicity equal to 1.

Note that many ’classical’ sequences which fulfill conditions (i),(ii), and (iii) (e.g. the
sequence of two powers, the Fibonacci sequence) are also regular.

Lemma 2 The sequences of two powers and the Fibonacci numbers (F1 = 1, F2 = 2, . . .)
are regular and fulfills conditions (i)-(iii).

Main result on regular sequences. Recall that the communication complexity of
this model, denoted by CC(k)(F ), is the least number of bits needed to be communicated
to compute F correctly.

Assume that we have k players and we assign a regular sequence Ai to each of them.
For a given point p = (p1, p2, . . . , pk) ∈ Nk; pi ≤ N ; (i = 1, 2, . . . , k), the ith players
knows (just) pi and his previously given set Ai. Let X := A1 × . . . × Ak. With minimal
communications they have to decide whether p ∈ FS(X) or not. Denote by F the function
which describes this.

Our main result is the following:

Theorem 3 Let X = A1×A2× . . .×Ak ⊆ Nk, where for every i = 1, 2, . . . k Ai is regular
and (i), (ii) and (iii) hold. Then

CC(k)(F ) < k log2

( log2N

log2 %

)
+ k.
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24



3.2 On non-regular case

Let X = A1×A2 ⊆ N2. As we have seen there are sequences, where the shortest represen-
tation of an element of FS(Ai) (i = 1, 2) is not a subset-sum. It is not obvious that which
conditions ensure that a given point (p1, p2) is an element of FS(X) or not. Clearly it is
necessary to have (multi)partitions of p1 = yt1 +yt2 + . . .+ytr and p2 = yi1 +yi2 + . . .+yik
for which r = k. One can show that it is not sufficient.

Nevertheless if X = A1 × A2, where A1 and A2 fulfill conditions (i), (ii) and (iii), we
will show an additional condition which is enough.

Theorem 4 Let A1 and A2 fulfill conditions (i), (ii) and (iii) and let X = A1 × A2. Let
p1, p2 ∈ N with rankA1(p1) = rank(p1) and rankA2(p2) = rank(p2) (for simplicity), and
let ε1 and ε2 be shortest representations of p1 and p2. Write Mi := mult(pi, εi); i = 1, 2.
Let K := max{M1,M2, |rank(p1)− rank(p2)|} and L := min{rank(p1), rank(p2)}.

If there are ε1 and ε2 for p1 and p2 such that, K ≤
√
L/2, then (p1, p2) ∈ FS(X).

For the proof the main tool is the following graph theoretical lemma which gives a suffi-
ciently condition for the pairwise different matching of the co-ordinates:

Lemma 5 ([1, Proposition 1]) Let X1, . . . , Xs be disjoint finite sets and Y1, . . . , Yt be
disjoint finite sets too. Let

U =

s⋃

i=1

Xi, V =

t⋃

j=1

Yj ,

with |U | = |V | and suppose that 1 ≤ |Xi| ≤
√
|U | for i = 1, 2, . . . s and 1 ≤ |Yj | ≤

√
|V | for

j = 1, 2, . . . t. Then there exists a bipartite graph G(U, V ) fulfilling the following conditions:

(a) there are no two edges (x1, y1); (x2, y2) for which x1, x2 ∈ Xi; y1, y2 ∈ Yj for some i
and j;

(b) G(U, V ) is a matching.

4 Concluding remarks

Recall that the general knapsack problem is known to be NP-complete and sounds as
follows: for a given sequence A = {a1, a2, . . . , an} ⊂ N decide that the equation s =∑n

i=1 εiai; εi ∈ {0, 1}, i = 1, 2, . . . , n is solvable or not in ε1, ε2, . . . , εn.
The density of a knapsack problem is defined as:

d :=
n

log2(max ai)
.

When d < 1 then there is a possible encryption process. When d > 1 there is no an
effective approach to attack the knapsack problem. The main tool is the so called basis
reduction method.

Now we will show a way to reduce this problem, decide whether a given point (p1, p2)
is an element of FS(A1 ×A2) or not, to a classical knapsack problem.
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Let (p1, p2) ∈ N2 and assume that 1 ≤ p1, p2 ≤M . Let B1 := {x1 < x2 < . . . xk} ⊂ A1

and B2 := {y1 < y2 < . . . ym} ⊂ Am, where k = max{T : x1 + x2 + . . . + xT ≤ M} and
m = max{R : y1 + y2 + . . .+ yR ≤M}.

Let now Z := {z = Mxi + yj : 1 ≤ i ≤ k; 1 ≤ j ≤ m} ⊂ N. Observe that (p1, p2) ∈
FS(A1 ×A2) if and only if Mp1 + p2 ∈ FS(Z)).
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1 Introduction and Motivation

A function on the Boolean cube is a function from {0, 1}n to R where n ∈ N. The analysis of
Boolean functions is an intensively investigated area of the theoretical computer science.
Sometimes the domain is vary; instead of {0, 1}n one can use {−1, 1}n, or Fn

2 , an n-
dimensional vector space. Some simple example is the majority, parity, modular functions
e.t.c

The main tool to represent Boolean functions is the Fourier-Walsh representation. See
details in [O’D]

Recently there is a strong interplay between computation complexity and combinatorial
number theory. Here just a few example of work of A. Samorodnitsky,L.Trevisan [ST06],
an excellent book on Communication Complexity, by A. Rao andA. Yehudayoff [RY20]
and recent work of the author [HE20],

2 Boolean functions defined on pseudo-recursive sequences

In the present work we use a structure from additive combinatorics to define a Boolean
function and its classical behaviours in computer sciences. These number theoretical struc-
tures pop up in additive representation theory. The original question of Erdős and Graham
[EG80] remained open (see also [H89]).

Definition 1 Let x1 = a ∈ N, {mi}∞i=1 be an infinite, {b1, b2, . . . bs} be a finite set of
integers. We say that a sequence of integers X = {xi}∞i=1 is said to be pseudo-recursive
sequence if the identity xn+1 = mn+1xn + bjn+1 holds, where bjn+1 ∈ {b1, b2, . . . bs}) for
n ≥ 0.

For example the sequence Ap
α = {⌊pnα⌋ : n ∈ N}, p ∈ N; p ≥ 2; α ∈ R+ fulfills this

condition. This type of sequences has a long list in the literature (see only e.g. [EG80],
[DK68],[BP21], [S21]).

Generally one can define a hypergraph on [n] where the elements of an edge correspond
to the variables. We are going to concentrate on some hypergraphs in which there are
many pairs of edges with ”large” intersections, and in an opposite situation, when the
”total intersection” is small.
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2.1 Highly intersecting hypergraphs

In this part we consider hypergraphs in which there are many pairs of edges with ”large”
intersections. More precisely our graph is a k-uniform cycle hypergraph, with k − 1 many
common elements in the connected edges. In this subsection our sequence will be {ai}ri=1 =
{⌊2iα⌋}ri=1 α ≥ 1.

Our first function will be the following: for x = (x1, x2, . . . , xn) ∈ {0, 1}n let

Fα(x1, x2, . . . , xn) :≡
n∑

j=1

aj⟨x, v(j)⟩ (mod 2). (1)

where v(j) = (v1, v2, . . . , vn) ∈ {0, 1}n, vj = vj+1 =, . . . , vj+k−1 = 1 and other bits are
zero. Throughout the paper we mean vs = vt when s ≡ t (mod n) and the addition is in
Z2.

Note that sometimes this function can also be considered as read-once function, intro-
ducing a new variable yj = ⊕j+k−1

i=j xi; namely when gcd(k, n) = 1. Recall that a Boolean
function is said to be read-once function, if all variable appears only one times. So we
assume that gcd(k, n) > 1.

We can define a related threshold function too. It will be Tα(x) := sign{Gα}, (sign{x} =
1 if x > 0 and sign{x} = −1 otherwise), where Gα : {−1, 1}n → R defined by

Gα(x1, x2, . . . , xn) :≡ a1x1x2 · · ·xk + a2x2x3 · · ·xk+1 + . . .+ an−k+1xn−k+1xn−k+2 · · ·xn+

+an−k+2xn−k+2xn−k+2 · · ·xn+1 + · · ·+ anxnx1 . . . xk−1.

2.2 Functions associated to ε−thin sets

Another type of representation of Boolean function when f : Fn
2 → R is the following:

f(x) =
∑

S⊆[n] f̂(S)
∏

i∈S(−1)xi .

Our next function will be the opposite of the previous function; we will assume the
total amount of intersections is ”small”.

The aim of this section is to give an estimation to the cardinality of the image set H
of H(x).

Definition 2 The system of sets S = {S1, S2, . . . , Sr};Si ∈ {0, 1}n, is said to be ε−thin
system, if

∑
1≤i<j≤r |Si ∩ Sj | < εr.

3 Results

Definition 3 A function is said to be a junta, if it depends only on a fix number of
variables.

Firstly we state that the threshold function is a junta:

Theorem 4 Let Tα := sign{Gα}. The function Tα is a junta.
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Definition 5 For a function g the influence of coordinate i on g is defined as Infi(g) =
Prx∈{0,1}n [g(x) ̸= g(x ⊕ ei)], where x is uniformly distributed over {0, 1}n, and g(x ⊕ ei)
means that we change the ith coordinate to 1 if xi = 0, and to 0 if xi = 1 respectively. The
total influence of g is defined to be Inf(g) :=

∑
i Infi(g).

It is an easy exercise that Infi(g) =
∑

i∈S∈[n] ĝ
2(S) and Inf(g) =

∑
S∈[n] |S|ĝ2(S).

Theorem 6 Let ηi ∈ {0, 1}. Then Infi(Fα) = ηi if and only if
∑i

j=i−k+1 αj ≡ ηi
(mod 2).

As a simple consequence of this we can describe those S ∈ [n] for which F̂α(S) = 0. Indeed

let k ≤ i ≤ n. Then for every i ∈ S, F̂α(S) = 0 holds, if and only if
∑i

j=i−k+1 αj ≡ 0
(mod 2).

In the next result we estimate the chance that Fα has influence at least r.

Theorem 7 Drawn α uniformly at random from [0, 1]. Then Inf(Fα) > r holds with
probability at least

1− 1

2n−(k−1)r−r logn
.

A circuit is said to be AC0[d]-circuit if it consists of AND, OR and NOT gates, fan-in
to the gates is unbounded with inputs x1, x2, . . . , xn. The the number of the gates (size of
the circuit) is bounded by a polynomial in n, and its depth is at most d.

Corollary 8 Drawn uniformly at random α from [0, 1]. Then with probability at least

1− 1

2n−k(Ω((logn)d+logn))
,

Fα does not belong to the class AC0[d].

If f : {0, 1}n 7→ {−1, 1} is a Boolean function, then its Shannon entropy we mean

H(f) :=
∑

S

f̂2(S) log
1

f̂2(S)
.

The Fourier-Entropy-Influence Conjecture (Briefly FEI conjecture) has a long list in the
literature. It states that H(f)≪ I(f) (recall I(f) is the total influence).

It has proved many type of Boolean functions, e.g. for read-once functions, linear
threshold function with high probability e.t.c. Now we will see a corollary of the previous
theorem, showing that with high probability for Fα the FEI conjecture holds.

Corollary 9 Drawn uniformly at random α from [0, 1]. Then with probability at least
1− 1

2n−O(k2−k logn)
the FEI conjecture is true for Fα.

For functions associated to ε-thin sets we are going to define the following function:
Let

H(x1, x2, . . . , xn) :=
r∑

i=1

ci
∏

j∈Si

(−1)xj ,

On a Boolean function defined on Number Theoretical structures

29



where {ci}ri=1 = {⌊3iα⌋}ri=1 α ≥ 1.
First note that all sums in the form

∑r
i=1 εici; εi ∈ {−1, 1} are pairwise distinct. It

immediately implies that |H| ≤ 2r. The following theorem shows that the lower bound is
close the upper bound:

Theorem 10 Let H(x1, x2, . . . , xn) :=
∑r

i=1 ci
∏

j∈Si
(−1)xj where {Si}ri=1 is an ε-thin

system. Then
2(1−ε)r ≤ H| ≤ 2r.
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1 Introduction

A set of integers is called primitive if it does not contain an element dividing another.
Similarly a set S of integers is called h-primitive (for a given positive integer h) if there is
no distinct elements a0, a1, a2, . . . , ah ∈ S with a0 dividing a1a2 . . . ah. A set B is called a
multiplicative basis of order h in S = {1, 2, . . . , n} if every member of S can be expressed
as the product of at most h (not necessarily distinct) members of B.

2 Primitive sets

The number of primitive subsets of [n] = {1, 2, . . . , n} were first studied by Cameron
and Erdős [3]. Let g(n) be the number of primitive subsets of [n]. They proved that for
sufficiently large n, 1.55967n ≤ g(n) ≤ 1.6n and conjectured that the limit of g(n)1/n

exists. In 2018, Angelo [1] verified this conjecture. However he was unable to provide a
method to find better estimate of the limit. With Liu and Pach we [6] proved that the
number of primitive subsets of [n] is (α + o(1))n and we gave an algorithm which can
approximate the constant α ≈ 1.57.

Another related problem is the number of maximum size primitive subsets of [2n]. That
problem was raised by Bishnoi in his blog post “On a famous pigeonhole problem” [2]
Note that a maximum primitive subset of [2n] is of size n. Indeed, group elements of
[2n] into n classes according to their largest odd divisor, then a primitive set can have
at most one element from each class. On the other hand {n+ 1, . . . , 2n} is primitive. Let
us denote by f(n) the number of n-element primitive subsets of [2n]. Vijay [10] proved
that for sufficiently large n, 1.303n ≤ f(n) ≤ 1.408n, however it was not clear whether the
limit of f(n)1/n exists. In [6] we answered this question, showing that this is indeed the
case, i.e. f(n)1/n converges to some β, which is roughly 1.318, and gave an algorithm to
approximate β to arbitrary precision. For practical purposes (limited by computing power
and running time) we calculated that 1.3183 ≤ β ≤ 1.31843, and 1.571068 ≤ α ≤ 1.574445.
Later that year McNew improved our numerical lower bounds slightly by different methods
in [7], but their method did not to improve on our upper bounds.

Here we present the main ideas (related to computer science) concerning the calcula-
tion of α and β. An easy upper bound of the number of choices for maximum size primitive
subsets is the following. Partition the numbers in [2n] into chains according to their largest
odd divisor. Each chain is in the form {t, 2t, 4t, . . . , 2mt}, for an odd t. A trivial upper
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bound for the number of choices is choosing from each chain independently. The corner-
stone idea of [6] is the following: if we take the chains {t, 2t, 4t, 8t, . . .}, {3t, 6t, 12t, . . .}
and {9t, 18t, 36t, . . .}, we cannot choose really independently if we want to get a primitive
subset. For example by choosing 6t, we rule out the possibility of choosing small elements
from {t, 2t, 4t, 8t, . . .}, e.g. we cannot choose t and 2t, since they divide 6t. We also rule out
choosing big elements from {9t, 18t, 36t, . . .}, since they are divisible by 6t. So instead of
choosing independently we should consider these set of chains as a two dimensional (divis-
ibility) lattice, and the task is to choose elements from each row such that there are no two
elements dividing another. In two dimensions the number of such choices can be performed
effectively by dynamic programming: each row’s number of choices depends only the choice
of the previous row. However, considering only two-dimensional lattices does not yield to
the convergence of f(n), so there remains a gap in upper and lower bounds. The solution
for this is generalising this idea further and grouping together the lattice starting with t
with the lattice starting with 5t, 25t, etc. This yields multi-dimensional divisibility lattices.
However, these lattices could yield better results given calculating number of choices of
large enough instances, we have not found a way to efficiently calculate this in more than
two dimensions. Instead we found out a method to combine the results obtained by calcu-
lating large two-dimensional lattices effectively and calculating smaller multi-dimensional
lattices in a (near) brute force manner.

3 h-primitive sets

The property of h-primitiveness was first studied by Erdős [4] back in 1938 (there called
Property Ph), who studied the maximum size of a 2-primitive subset of [n]. We stud-
ied the enumeration problem of h-primitive sets. For h = 1 the problem is exactly the
primitive case mentioned in the previous section. The case h > 1 requires different meth-
ods. With Pach we proved in [8] that the number of 2-primitive subsets of {1, . . . , n} is

T (n) · eΘ(n2/3/ logn) for a certain function T (n) ≈ (3.517 . . .)π(n). Finally, for h > 2 the
number of h-primitive subsets is T (n) · e

√
n(1+o(1)). Note that the bounds are tight up to

a constant factor in the lower order term in the exponent.

The upper bound (in both of the cases h = 2 and h > 2 is obtained with the help of
multiplicative bases of order h. The main idea is that for any fixed multiplicative basis B
(of order h) and any A h-primitive set, there is an injective mapping ϕ : A→ B, such that
for any ϕ(a) = b we have b | a. We could determine which elements got mapped to primes
and which elements got mapped to the small set of non prime elements of B. By carefully
counting the number of possible mappings we get the upper bound for h-primitive sets.
For the connection of h-primitive sets and multiplicative bases of order h see [9].

4 Complexity results

In this talk we will discuss some algorithmic complexity questions related to h-primitive
sets and multiplicative bases of order h. For a constant h, deciding whether a set is h-
primitive or whether it is a multiplicative basis (of order h) in a given set S can be
performed in polynomial time by checking all subsets in a brute-force manner. However,
when h is also part of the input, we show that deciding h-primitive-ness becomes co-NP-
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complete and deciding whether a set B is a multiplicative basis of order h in an arbitrary
set S becomes NP-complete.

4.1 Complexity of h-primitiveness

A natural question is to decide whether a given set for a given h is h-primitive or not,
preferably in polynomial time. If we consider h as a constant, it can clearly be performed
in O(h · nh+1) arithmetic operations, where n is the size of the given set by enumerating
all possible products of size h.

In practical applications where h is large, this algorithm becomes infeasible. Íf we
consider h as part of the input (i.e. we simultaneously want to solve it for any h), this
algorithm is exponential in the size of the input. A natural question is whether there exists
a better algorithm which is polynomial even with unrestricted h.

The answer to the previous question turns out to be most likely negative: the problem
of deciding h-primitive-ness is co-NP-complete, so it can not be performed in polynomial
time, unless P=NP, and furthermore there isn’t even an efficient witness for h-primitive-
ness, unless NP=co-NP.

Our problem is clearly in co-NP (the witness is a suitable set of a0, a1, . . . , ah, such
that a0 | a1a2 · · · ah). To show that our problem is co-NP-hard, we have to reduce a known
NP-complete problem to the complement of h-primitive-ness. A suitable problem is the
minimum vertex cover problem, one of Karp’s original 21 NP-complete problems [5]. The
minimum vertex cover problem is the following: given a (simple) graph and a positive
integer m: the question is whether there is a set S of vertices such that |S| = m and each
edge has an endpoint in S (so each edge is “covered” by the vertex set). The main idea
of the reduction is to assign numbers to the vertices and take another large number (the
“target”) such that the “target” number divides the product of h other members if and
only if the other members form a vertex cover. Therefore, our set is not h-primitive if and
only if there is a vertex cover of size h.

4.2 Complexity of multiplicative bases of order h

For a constant h, checking whether a set is a multiplicative basis of order h can be per-
formed similarly like in the h-primitive case: checking all products of size at most h, and
checking whether we got all desired elements as products. Like the h-primitive case this is
also exponential if we consider h as part of the input.

Another interesting case is when we are interested in multiplicative bases in the ground
set [n] (and h is part of the input). It turns out, that even this case is solvable in polynomial
time. The algorithm is the following:

1. Take all members of B and mark them as “solved by 1 element”

2. In an iteration take all previously solved elements and multiply them by each mem-
ber of B. Discard the numbers larger than n, mark the other previously unsolved
elements as “solved by size 2 products”

3. Repeat this iteratively: take all newly solved elements (by size i products) and mul-
tiply them by each member of B and mark the gotten numbers as “solved by size
i+ 1”.
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4. Iterate this h times, finally labelling elements by “solved by size h products”.

5. Check whether all elements of [n] are solved by a product. If yes, then B is a multi-
plicative basis of order h otherwise it is not.

This algorithm has a running time of O(nh|B|). At first glance it is not clear whether
this is polynomial since n and h can be exponential in the size of the input. However, since
all multiplicative bases for [n] should contain the ≈ n/ log n primes up to n, therefore n is
clearly polynomial in the input size. The case of h is similar: if h is larger than log2 n, a
set is an order h multiplicative basis, then it is also a multiplicative basis of order log2n,
so it is enough to check until that point. So effectively (with small modifications) this is a
polynomial algorithm.

However when h is part of the input and we consider any given set (not only in the form
of {1, 2, . . . , n}), the problem becomes NP-complete, even if the given set is a singleton
(i.e. asking whether a single element can be expressed as the product of at most h others).
The idea of the proof is to reduce the X3C (exact cover by size 3 sets) problem to it. That
problem is also part of the Karp’s original 21 NP-complete problems.

References
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Secret sharing refers to methods for distributing some secret information amongst a
finite set of participants holding a partial information of the secret called share. The goal
is to distribute these shares in such a way that only predefined coalitions of users are able
to compute the secret.

Several secret sharing constructions are based on geometric objects. In this talk we
investigate multilevel schemes, where the participants are partitioned into groups of the
same role. Especially, we propose finite geometric constructions for compartmented and
conjunctive hierarchical secret sharing schemes.

Within this talk we consider secret sharing schemes from an algorithmic point of view.
Assume that some secret information s is distributed amongst a group of participants P
by a special additional entity called dealer. The dealer participates in this distribution step
only. The secret s can be reconstructed from the respective share only when a sufficient
number of shares are combined together. The collection of possible ”reconstructers” is
described by the so-called access structure A, i.e. a monotone increasing set of subsets of
the participants. The talk is based on [4] and [5].

In this talk we use the following useful linear algebraic method introduced by Blakley
and Kabatianskii [1] and van Dijk [2]. Let us assume that the dealer and the participants
are assigned vectors d, vi ∈ Fkq for i ∈ P. The proposed constructions are based on the
following result:

Theorem 1 (Blakley and Kabatianskii [1]) A linear secret sharing generated by
G = (d, v1, . . . , v|P|) represents an ideal perfect secret sharing scheme realizing A if and
only if the following conditions hold:

1. ∀X ∈ A the vector d is a linear combination of the vectors vx, x ∈ X;

2. ∀Y /∈ A the vector d is disjoint from the subspace generated by vectors vy, y ∈ Y.

Multilevel secret sharing is one straightforward generalization of the widely used t-
threshold schemes, where, apart from some threshold value(s), the set of participants is
partitioned into smaller subsets (called groups or levels) such that the users within any
given level are equivalent from the secret sharing point of view. We are focusing on two
special cases, namely on compartmented access structures with upper bounds and on
hierarchical threshold access structures as a generalization of results [4]. Further general
multilevel constructions based on bivariate interpolation techniques are introduced by
Tassa and Dyn [6].

In compartmented access structures with upper bounds the goal is to avoid a given
percentage of members from all (disjoint) groups in qualified subsets. More precisely, let
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P =
⋃m
i=1 Gi and let t ∈ N, ti ∈ N, i = 1, . . . ,m be thresholds with t ≤∑m

i=1 ti. Then the
access structure is the following:

A = {A ⊆ P : ∃B ⊆ A such that |B ∩ Gi| ≤ ti, ∀1 ≤ i ≤ m and |B| = t}.

We propose geometric constructions for the special case of t1 = . . . = tm = t − 1 and
show the limits of this method as well.

In hierarchical threshold access structures with m disjoint levels, let P =
⋃m
i=1 Li and

let t1 < t2 < . . . < tm be a sequence of thresholds.

In conjunctive (t1, . . . , tm)-hierarchical schemes the access structure is the following:

A =
{
A ⊆ P : |A ∩ (

i⋃

j=1

Lj)| ≥ ti, for all 1 ≤ i ≤ m
}
.

Only some sporadic constructions are known for conjunctive hierarchical schemes ([6]).

We suggest ideal constructions for special cases of hierarchical access structures, in
particular a 2-level conjunctive (1, n + 1)−hierarchical scheme and 3-level conjunctive
(1, 2, n+ 1) scheme using finite geometry arguments. We propose ideas for generalization
of these constructions for any number of levels.

Let PG(n, q) denote the projective space of dimension n over the finite field Fq. Πr

will be the shorthand for a projective subspace of dimension r. A pencil in Πr is the set
of the (q + 1) Πr−1 -s (in the fixed Πr), each containing a common fixed Πr−2. A set of
t points (1 ≤ t ≤ n + 1) in PG(n, q) is independent if no Πt−2 contain them. A set of k
points in PG(n, q) is a k-arc if any subset of size n+ 1 is independent. Note that if n = 1
it means that in PG(1, q) any set of points is an arc. The following configuration defined
in [3] is the key to our constructions:

Definition 2 Let Ψ0, ...,Ψq be a pencil through some Πn−2 in PG(n, q). A pencil arc
(k-parc) K is a set of k points, in PG(n, q) satisfying the following conditions:

1. Each K ∩Ψi is a ki-arc in Πn−1 for 0 ≤ i ≤ q, where ki = |K ∩Ψi|;

2. K ∩Ψi ∩Ψj = ∅ for 0 ≤ i 6= j ≤ q;

3. Any n+ 1 points of K not contained in any single Ψi are independent.

Note (Fuji-Hara, Miao): if there is a k-parc in PG(t − 1, q) as above, with k = k0 +
k1 + ... + km points, ki ≥ 1 for 0 ≤ i ≤ m and k0 = min{ki}, then there exists an
ideal secret sharing scheme realizing compartmented access structure with upper bounds
t1 = . . . = tm = t− 1 on |P| = k − k0 participants.

In [3] it was proved that in PG(2, q), a k-parc is of size at most k ≤ 2q. We extend this
result to higher dimensions.

Theorem 3 Let K be a k-parc in PG(n, q). Then

(i) if n = 2 then k ≤ 2q, with equality if and only if K is the point set of two lines minus
their intersection point;
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(ii) if n ≥ 3 then k ≤ M(n − 1, q) + 1, where M(n, q) is the largest size of an arc in
PG(n, q).

Note that we have examples of size k = M(n− 1, q) + 1.

In their paper [3], Fuji-Hara and Miao gave a construction based on Baer subplanes
for 2-dimensional pencil arcs. We extend their constructions in different ways. First, we
construct pencil arcs from planar arcs.

Identify AG(2, qh) ∼ X × Y , where X ∼ Fhq and Y ∼ Fhq are the horizontal and the
vertical axes. Let’s call here the translates of the first factor (horizontal axis) the horizontal
lines `0, ..., `qh−1, which, together with `∞, form the pencil with center P .

Let L1 be a (h− 1)-dim q-subspace of the horizontal axis, i.e. X = L0×L1 for some 1-
dim q-vectorspace L0 ⊂ X, wlog L0 = Fq. Let L2 be a 1-dim q-subspace of the vertical axis
Y , again wlog L2 = Fq. Finally, suppose wlog `0, ..., `q−1 are the pencil lines intersecting
L2.

Let A0 = L1×L2. Any horizontal translate of it is either disjoint from A0 or identical
with it, hence they form a partition ∪λ∈Fq(A0 + λ) = `0 ∪ ... ∪ `q−1. Note that here, for
any point Q ∈ `0 ∪ ... ∪ `q−1, it has coordinates Q = (a+ λ, y), where a ∈ L1, λ ∈ L0 and
y ∈ L2.

Consider the affine plane AG(2, q) ∼ L0×L2 and an arc S in it. Define K := {(a+λ, y) :
a ∈ L1, (λ, y) ∈ S}.

Observe that K consists of |S| ”line segments”, each contained in one of the pencil
lines `i and of size |L1| = qh−1.

K is a pencil arc (of size |S|qh−1).
There exist arcs of size q + 1 in AG(2, q) for q odd and arcs of size q + 2 in AG(2, q)

for q even =⇒ (many) k-parcs with k = qh + qh−1 in planes of odd order qh; and k-parcs
with k = qh + 2qh−1 in planes of even order qh.

We also gave a pencil arc based on caps.

Definition 4 Let Ψ be a hyperplane of PG(n, q), K1 be a set of k1 points in PG(n, q)\Ψ,
and K2 be a set of k2 points in Ψ. A hierarchical arc in PG(n, q) is a set K = K1 ∪ K2 of
k1 + k2 points in PG(n, q), also called a (k1, k2)-harc, satisfying the following conditions:

(1) K1 is a k1-arc in PG(n, q);

(2) K2 is a k2-arc in PG(n− 1, q);

(3) Any n+ 1 points of K not contained in the hyperplane Ψ are independent.

Fuji-Hara and Miao [3] showed that if there is a (k1, k2)-harc in PG(t − 1, q) with
k1 ≥ 2 and k2 ≥ 0 then there exists an ideal conjunctive (1, t)-hierarchical scheme with
|P| = k1 + k2 − 1. The authors also proved that in PG(2, q) for a (k1, k2)-harc its size is
at most k1 + k2 ≤ q + 2. The following theorem extends this result to higher dimensions.
An affine pointset S ⊂ AG(2, q) is called a hyperfocused arc if it is an arc and its secants
determine |S| − 1 directions (which is the least possible value).

Theorem 5 Let K be a (k1, k2)-harc in PG(n, q), |K| = k1 + k2 = k. Then

(i) if n = 2 then k ≤ q + 2, with equality if and only if K1 is a hyperfocused arc of the
affine plane and K2 is the set of non-determined directions;
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(ii) if n ≥ 3 then k ≤ M(n − 1, q) + 1, where M(n, q) is the largest size of an arc in
PG(n, q).

A conjunctive hierarchical (1, 2, n+ 1)-scheme (n ≥ 3): we also gave new constructions
for harcs in PG(n, q). Our construction is a generalization of an ideal conjunctive (1, n+1)-
hierarchical scheme based on [3].

A geometric scheme composed of 3 levels L1,L2,L3. A valid subset should contain at
least n + 1 elements from L1 ∪ L2 ∪ L3, such that at least 2 elements are from L1 ∪ L2
and at least 1 element from L1. In PG(n, q) = AG(n, q) ∪H∞ we will choose our sets as
follows. Let

• |L1| = k1 = c1q
1/n be a subset of an arc (e.g. a so-called normal rational curve) in

AG(n, q);

• |L2| = k2 = c2q
1/n be a subset of an arc (e.g. a normal rational curve) in H∞;

• |L3| = k3 = c3q
1/n be a subset of an arc (e.g. a normal rational curve) in H which

is a (n− 2)-dimensional subspace of H∞;

• furthermore, a set D ⊂ AG(n, q) of size c4q is determined, such that the dealer, i.e.
a point D will be chosen from D.

Note that, this construction works if q > cnn yielding an O(n3) improvement in the
size of the underlying field in contrast with the best known general result of Tassa and
Dyn [6].
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The McEliece cryptosystem is a promising alternative to public-key cryptosystems
based on difficult mathematical problems, and it is thought to be secure against post-
quantum attacks. The class of subfield subcodes of linear codes yields some good codes,
which are of interest because of their applications to public-key cryptography due to
McEliece and Niederreiter and to signature schemes based on error-correcting codes. In
our previous work [10, 9], we investigated the problem of finding the true dimension of
Hermitian subfield subcodes. This inspires us to build McEliece scheme based on these
code parameters. Indeed, reducing the key size and improving the security level of the
McEliece cryptosystem are among the aims of cryptography today. McEliece cryptosystem
is promising for the post-quantum era [2, 14].

This paper’s primary goal is to provide a thorough security analysis for the parameter
selection process, which involves the computational cost of information set decoding (ISD)
algorithm using Hermitian subfield subcodes parameters. Our approach focuses on the
optimal parameters that improve the key size for a given security level. Furthermore, due
to practical considerations, the key size of several parameter selections is compared to
that of the classical McEliece cryptosystem submitted to NIST [3] for the same security
level. Besides, we identify the Hermitian subfield subcodes parameters that achieve a Schur
square dimension roughly equal to that of random codes. This technique is employed in
the so-called distinguisher attack, and that may allow the attacker to determine the Schur
square dimension of the code used as a public key.

1 Preliminaries

We refer the reader to [10, 9, 8] for basic concepts on algebraic curves and algebraic geom-
etry (AG) codes such as curves, function fields, valuations, divisors, and Riemann–Roch
spaces. In [8], we provide a sketch of the most relevant results on subfield subcodes of
linear codes topic. In the sequel of this paper, we use the same notation as in [9].

1.1 Hermitian codes

Hermitian codes are a class of algebraic geometry codes with good properties, they are
constructed from Hermitian curves over finite fields. Let Hq be a Hermitian curve over
a finite field Fq2 . Hq has the form Hq : Y q + Y = Xq+1 in affine coordinates. It is
a non-singular curve, and its genus is g = q(q − 1)/2 by the definition of the genus
formula. The points of the projective plane PG(2, q2) satisfying the homogenous equation
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Y qZ + Y Zq = Xq+1 are called the rational points of Hq and denoted by Fq2(Hq). Hq

has one infinite point P∞ = (0 : 1 : 0) and q3 affine rational points P1, . . . , Pq3 , this make
the class of Hermitian curves interesting since they attain the maximal number of rational
points for Hasse-Weil bound [11].

By a Hermitian code we mean a functional AG code of the form CL (D,G). Given
all rational points P1, P2, · · · , Pq3 of Hq, a divisor D on Hq is a formal sum D = P1 +
P2 + · · · + Pq3 . In this paper, the divisor G takes two forms depending on the type of
Hermitian codes. In the 1-point Hermitian code CL(D,G) case, G has the form G = sP∞
where s is a positive integer belonging to S = {1, · · · , n+ 2g − 1}. For the degree 3 place
Hermitian code, G = sP where P is a place of degree 3. In the 1-point case, the basis of
the Riemann-Roch space L (sP∞) can be given explicitly by [15]:

M(s) :=
{
xiyj | 0 ≤ i ≤ q2 − 1, 0 ≤ j ≤ q − 1, qi+ (q + 1)j ≤ s

}
.

In the degree 3 case, the Riemann-Roch space

L (sP ) =

{
f

(ℓ1ℓ2ℓ3)u
| f ∈ Fq2 [X,Y ],deg f ≤ 3u, vPi(f) ≥ v

}
∪ {0}.

can be computed, see [12].

1.2 Hermitian subfield subcodes

Let q be a prime power. We consider the Hermitian curve Hq over Fq2 , together with the
divisor D which is the sum of affine rational points of Hq. The divisor G is equal either
to the rational infinite place P∞, or the degree 3 Hermitian place P , respectively. Then,
for any integer s ∈ S and subfield Fr of Fq2 , the Hermitian subfield subcodes

C1-pt
q,r (s) = CL(D, sP∞)|Fr , Cdeg-3

q,r (s) = CL(D, sP )|Fr

are well defined, and they are Fr-linear codes of length n = q3, and minimum distance
δΓ = n− degG where δΓ is called the Goppa designed minimum distance.

1.3 McEliece cryptosystem

McEliece introduced the first code-based public-key cryptosystem in 1978 where he em-
ployed error-correcting codes to generate the public and private key with security relying
on two aspects: NP-completeness of decoding linear codes and distinguishing the chosen
family of codes. In his original proposal McEliece used binary Goppa codes which are the
subfield subcodes of generalized Reed-Solomon codes.

Let C be a linear code of length n, dimension k and minimum distance d, we denote
the error capability by t = ⌊d−1

2 ⌋ . For the keys generation, we consider the generator

matrix usually in its systematic form G =

[
Ik
G0

]
of C, a random k× k invertible matrix

S and n×n permutation matrix P . Thus, the public key is Kpub = (G′, t) where G′ = SGP
and which has size of k(n − k)⌈log2(q)⌉. The secret key is Ksec = {G,S, P}. Let m be a
plaintext of length k, and e a random error vector such that wt(e) ≤ t.

• Encryption: c = mG′ = mSGP + e.
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• Decryption: to get back the original messagem from c, we simply compute (mSGP+
e)P−1 = mSG+ eP−1, then we decode to get mS. Thus mSS−1 = m.

1.4 Structural and decoding attacks against McEliece cryptosystem

Attacks against code-based cryptography can be divided into two classes: structural or
key recovery attacks which aimed at recovering the secret code, and decoding, or message
recovery attacks that seek to decrypt the transmitted ciphertext. The most recent and
most effective structural attack against AG code-based McEliece cryptosystems is the
Schur product distinguisher, which is given in [4, 7, 5].

Definition 1 (Schur product). Given two elements a = (a1, . . . , an) and b = (b1, . . . , bn)
in Fn

q , The Schur product is the component-wise

a ∗ b := (a1b1, · · · , anbn)

product on Fn
q . For two linear subspaces A,B ⊆ Fn

q , their Schur product is the linear
subspace

A ∗B := SpanFq
{a ∗ b | a ∈ A and b ∈ B}.

If B = A, then A ∗ A is denoted as A∗2 and, we define A∗t by induction for any positive
integer t.

Since one of the McEliece cryptosystem’s security assumptions is that the chosen fam-
ily of codes must be indistinguishable. The Schur product operation is a useful tool for
distinguishing AG codes from random ones because the evaluation codes do not behave
like random ones. More precisely, let CL(D,G) be an AG code and C a linear random
code both in Fn

q and have the same dimension k, the argument is that dimCL(D,G)
∗2 is

smaller than dimC∗2 ≤ k(k+1)
2 .

The security of the McEliece cryptosystem is also based on the NP-completeness of
linear code decoding. In 1962, Prange introduced a generic decoding algorithm called
Information Set Decoding that can solve computational syndrome decoding (CSD) [13],
which consists of correcting t errors that occur in a codeword of an [n, k] linear code and
does not require an explicit code structure. We base our security analysis on the time
complexity of Prange algorithm:

CPrange(n, k, t) =

(
n
t

)
(
n−k
t

)CGauss(n, k), (1)

where CGauss(n, k, q) is the time complexity of the Gauss-Jordan elimination of a k × n
matrix over Fq. Many improvements have been made to Prange’s algorithms; however,
they do not make a significant difference.

2 Our proposal

The family of codes we suggest to use for McEliece scheme is the Fq2/Fq subfield subcodes
of 1–point and degree 3 place Hermitian codes. The National Institute of Standards and
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Technology [3] has recently begun a selection process to standardize quantum-resistant
public-key cryptosystems.

We consider classical McElice cryptosystem variants built on Goppa codes. The pa-
rameters for cryptosystems reported in [1] are designed to be comparable to the computa-
tional cost required to break AES-128 (category 1), AES-192 (Category-3), and AES-256
(Category 5). The following tables summarize the code parameters of Classical McEliece
cryptosystem submitted to NIST round 2-code-based cryptosystems, and those of Hermi-
tian subfield subcodes C = Cγ

q,r(s) (code length n, dimension k, and error-capability t),
as well as the computational cost of Prange’s ISD algorithm for each variant, expressed
as log2(bit operations) with the public key size.

Classic McEliece n k t Prange Key-Size(bit)

Category 1 3488 2720 64 170.82 2088960
Category 3 4608 3360 96 214.70 4193280
Category 5 6688 5024 128 293.55 8359936

6960 5413 119 294.49 8373911
8192 6528 128 331.64 10862592

Table 1: Classical McEliece cryptosystem

Code Type n k t Prange Key-Size(bit)

Category 1 C1−pt
16,4 (2580) 4096 430 757 170.72 3152760

C1−pt
16,2 (3474) 4096 1027 310 170.64 3151863

C1−pt
11,11(1174) 1331 927 78 170.66 1295584

C1−pt
13,13(1158) 2197 322 519 170.20 2234140

Cdeg−3
11,11 (288) 1331 413 233 170.78 1311588

Cdeg−3
13,13 (389) 2197 325 514 170.05 2251347

Category 3 C1−pt
16,4 (2729) 4096 620 683 214.25 4310240

C1−pt
13,13(2038) 2197 1733 79 214.85 2975567

Cdeg−3
13,13 (678) 2197 1717 81 215.52 3049754

Category 5 C1−pt
13,13(1860) 2197 1396 168 293.33 4137816

Cdeg−3
13,13 (614) 2197 1360 177 295.99 4212284

Table 2: McEliece cryptosystem based on Hermitian subfield subcodes
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[10] Sabira El Khalfaoui and Gábor P.Nagy, On the dimension of the subfield sub-
codes of 1-point Hermitian codes, Advances in Mathematics of Communications 15
(2021), 219–226.

[11] Alfred J. Menezes, Ian F. Blake, XuHong Gao, Ronald C. Mullin, Scott A.
Vanstone,and Tomik Yaghoobian, Applications of Finite Fields, vol. 199. Springer
Science & Business Media, 2013.
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Throughout this extended abstract, q denotes a prime power and Fq denotes the Galois
field of q elements, while p stands for the characteristics of Fq. Let Fn

q be the n -dimensional
vector space over Fq. Denote by [n, r]q a q-ary linear code of length n and dimension r,
which is the set of codewords (code vectors) of a subspace of Fn

q of dimension r.

Definition 1 In a linear code, a codeword is minimal if its support does not contain the
support of any codeword other than its scalar multiples. A code is minimal if its codewords
are all minimal.

Minimal codewords in linear codes were originally studied in connection with decoding
algorithms [10] and have been used by Massey [11] in a secret sharing scheme. For a
general overview on recent results in connection with minimal codes we refer to [1]. The
general problem is to determine the minimal length of an [n, k]q minimal code can have,
provided that k and q are fixed.

Definition 2 (Minimal length of a minimal code) Denote by m(k, q) the minimal
length of an [n, k]q minimal code with parameters k and q.

The following bounds are due to Alfarano et al. [1] and Chabanne et al. [4].

Theorem 3 ([1, 4]) Let C be an [n, k]q minimal code. We have

(k − 1)(q + 1) ≤ m(k, q) ≤ min



ck

2q,
2k

logq

(
q2

q2−q+1

)





for some c ≥ 2/9.

Note that the upper bound of [4] is non-constructive and it roughly says m(k, q) .
2kq ln(q), while the quadratic upper bound due to Alfarano et al. [1]. Our contribution is
a linear upper bound in both k and q.

Theorem 4

m(k, q) ≤
⌈

2

1 + 1
(q+1)2 ln q

(k − 1)

⌉
(q + 1) and m(k, 2) ≤ 2k − 1

log2(
4
3)
.

for q > 2 and q = 2, respectively.

Developments in Computer Science, Budapest, pages 47 - 50, 2021.

47



Blocking sets and their generalisations are well-known concepts in finite geometry. As
it was noticed recently by Alfarano, Borello and Neri [2] and independently by Tang, Qiu,
Liao, and Zhou [12], minimal codes are in one-to-one correspondence with special types of
blocking sets of projective spaces, which they called cutting blocking sets after the earlier
paper of Bonini and Borello [3]. In fact, this concept has been investigated in connection
with saturating sets and covering codes a decade earlier by Davydov, Giulietti, Marcugini
and Pambianco [5] under the name strong blocking sets and in the paper of Fancsali and
Sziklai [7] in connection with so-called higgledy-piggledy line arrangements under the name
generator set. We denote the finite projective geometry of dimension N and order q by
PG(N, q).

Definition 5 (Multifold strong blocking sets, aka cutting blocking sets) A t-fold
strong blocking set of PG(N, q) is a point set that meets each (t−1)-dimensional subspace
Λ in a set of points which spans the whole subspace Λ [5]. A cutting t-blocking set of
PG(N, q) is a point set that meets each (N − t)-dimensional subspace Λ in a set of points
which spans the whole subspace Λ [3]. A cutting blocking set (without prefix) is a cutting
1-blocking set.

Clearly, cutting t-blocking sets and (N− t+1)-fold strong blocking sets coincide. It can be
shown that a cutting blocking set of PG(N, q) of size n corresponds to a minimal [n,N+1]q
code (see [2, 12]). Thus, as short minimal codes are of interest, constructing small cutting
blocking sets of PG(N, q) is highly relevant. One may try construct such a set as the union
of lines.

Definition 6 A set of lines of PG(N, q) is called higgledy-piggledy, if the union of their
point sets is a cutting blocking set of PG(N, q).

Fancsali and Sziklai proved the following bounds.

Theorem 7 (Fancsali, Sziklai, [7]) Let F be an arbitrary field.

i) If |F| ≥ N + bN/2c, then every higgledy-piggledy line set of PG(N,F) contains at
least N + bN/2c lines.

ii) If |F| ≥ 2N − 1, then there exist a higgledy-piggledy line set of PG(N,F) containing
2N − 1 lines.

Note that for 2 ≤ N ≤ 5, there are higgledy-piggledy line sets in PG(N, q) of size
N +bN/2c, provided that q is large enough. The weakness of Theorem 7 is that it requires
q to be large, whereas the typical approach in coding theory is to fix q and let the length of
the code vary. The only known construction of higgledy-piggledy line sets that works for
general N and q is the so-called tetrahedron: take N + 1 points of PG(N, q) in general po-
sition, and then the

(
N+1
2

)
lines joining these points are easily seen to be higgledy-piggledy

(see [2, 3, 5]). However, this construction is much larger than the expected minimum.

Thus it is of interest to construct higgledy-piggledy line sets in PG(N, q) of small size
from two points of view. First, they give rise to short minimal codes. Second, to determine
whether the lower bound remains valid for small q (and possibly large dimension) as well.
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Theorem 4 is derived as follows. Case q > 2 is based on a random construction of
taking the point set of the union of less than 2k lines in a suitable projective space. It
turns out that choosing lines uniformly at random results a higgledy-piggledy line set with
positive probability. For q = 2, the bound is obtained by a randomly selected point set.
The expected value of the number of hyperplanes not generated by the set will be less
than 1, hence the claim follows.

Finding short minimal codes, that is, small multifold strong blocking sets, has relevance
in another code theoretic aspect as well, since multifold strong blocking sets are linked to
covering codes. From a geometric perspective, these objects correspond to saturating sets
in projective spaces.

Definition 8 (Saturating sets) A point set S ⊂ PG(N, q) is ρ-saturating if for any
pointQ of PG(N, q)\S there exist ρ+1 points in S generating a subspace of PG(N, q) which
contains Q, and ρ is the smallest value with this property. Equivalently, the subspaces of
dimension ρ which are generated by the (ρ+ 1)-tuples of S must cover every point of the
space. The smallest size of a ρ-saturating set in PG(N, q) is denoted by sq(N, ρ).

For recent upper bounds on %–saturating sets of PG(N, q) the reader is referred to [6].

Definition 9 (Covering radius, covering code) The covering radius of an [n, n− r]q
code is the least integer R such that the space Fn

q is covered by spheres of radius R centered
on codewords. If an [n, n − r]q code has covering radius R, then it is referred to as an
[n, n− r]qR covering code.

Note that we can apply the following equivalent description. A linear code of co-dimension
r has covering radius R if every (column) vector of Fr

q is equal to a linear combination
of R columns of a parity check matrix of the code, and R is the smallest value with this
property. The covering problem for codes is that of finding codes with small covering radius
with respect to their lengths and dimensions. Covering codes are those codes which are
investigated from the point of view of the above covering problem. Usually the parameters
for the covering radius and the co-dimension are fixed and one seeks a good upper bound
for the length of the corresponding covering codes.

Definition 10 The length function lq(r,R) is the smallest length of a q-ary linear code of
co-dimension r and covering radius R.

There is a one-to-one correspondence between [n, n − r]qR codes and (R − 1)-saturating
sets of size n in PG(r − 1, q). This implies lq(r,R) = sq(r − 1, R− 1) [5].

Theorem 11 (Denaux [6], Theorem 6.2.12.) Suppose that q is a prime power. Then

%+ 1

e
qN−% < sq%+1(N, %) ≤ (%+ 1)(%+ 2)

2

(
qN−% +

2%

%+ 2

qN−% − 1

q − 1

)
.

Applying a random construction based on point sets of subspaces in the spirit of higgledy-
piggledy line sets, we improved the known upper bounds when q is an Rth power and
R ≥ 2

3r. The theorem below ensures the existence of a set of higgledy-piggledy (N− t+1)-
spaces of size m.
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Theorem 12 There is a strong t-fold blocking set B in PG(N, q) consisting of the points
of m subspaces of dimension N − t+ 1 for

m = d(N − t+ 2)(t− 1)c1(q) + c2(q)e,
where the constants c1(q) and c2(q) depending on q s.t. c1(q) → 1 and c2(q) → 0 as q
tends to infinity.

Corollary 13 sq%+1(N, %) ≤ dc1(q)(N − %+ 1)%+ c2(q)e qN−%+1−1
q−1 .

Let us also note that the construction of Fancsali and Sziklai [8] yields sq%+1(N, %) ≤
((N − %+ 1)%+ 1) q

N−%+1−1
q−1 but requires the condition q > N + 1.
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Boolean functions are often applied in cryptography, since they can be used in stream
ciphers as pseudo-random generators. It is natural, that in cryptography one of the most
important aim is to reduce the vulnebarility of encryptions. There are several attacks
aiming to circumvent the security of a cryptographic system. One of them is the Siegen-
thaler attack, which uses the existence of correlation between the input and output bits
of a Boolean function. Another attack is the side channel attack, which tries to find the
weaknesses by analysing physical parameters, like timing information, power consumption,
electromagnetic leaks or even sound. We can defend against both of them with correlation
immune functions.

Definition 1 (Correlation-immune function) An f :Fk
2 → F2 Boolan function is said

to be correlation immune of order t (1 ≤ t ≤ k) with notation CI(t), if for any fixed
subset of t variables the probability that, given the value of f(x), the t variables have any
fixed set of values is always 2−t, no matter what the choice of the fixed set of t values is.

An example:
f :F4

2 → Z2, f(x1, x2, x3, x4) = x1 + x3 + x4 is a second degree correlation immune
function (CI(2)).

The support of f :
x1 x2 x3 x4
1 0 0 0
1 1 0 0
0 0 1 0
0 1 1 0
0 0 0 1
0 1 0 1
1 0 1 1
1 1 1 1

Although we can defend against the mentioned attacks, the defense is costly. We would
like to know the minimal size of the support of correlation immune functions with k
variables and order t in order to reduce the cost. It is difficult to answer in the language
of functions, it is easier to examine orthogonal arrays, that are strongly connected to
CI-functions. Supports of t-th order correlation immune functions give simple orthogonal
arrays with strength t, if their elements are written as rows.

Definition 2 A binary array with N rows and k columns is said to be an orthogonal
array if in every subset of the columns with t elements every binary t-tuple appears in
exactly N/2t rows, where t is called the strength of this orthogonal array.
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Some orthogonal arrays have a special property. In simple orthogonal arrays there is
no repetition among the rows.

The support of the previous function f :

1 0 0 0
1 1 0 0
0 0 1 0
0 1 1 0
0 0 0 1
0 1 0 1
1 0 1 1
1 1 1 1

We have to check the orthogonal array property with strength 2, which means that
every 2-tuple appears exactly twice in every arbitrarily chosen subarray with two columns.

As it was mentioned we would like to know the minimum weight of CI functions. From
the aspect of orthogonal arrays the question is that with given parameters k and t what
is the minimal value N for which an orthogonal array exists with N rows. The problem
now is to tell whether an orthogonal array exists with given parameters. This is difficult
already for small parameters. We always look for simple orthogonal arrays because these
are the ones that are applied in cryptography.

There is a connection between orthgonal arrays and linear codes, which can help us to
give answer in questionable cases.

Theorem 3 If C is a (k,N, d)2 linear code over the field with two elements with dual
distance d⊥ then the codewords of C form the rows of an OA(N, k, 2, d⊥ − 1). Conversely
the code corresponding to an OA(N, k, 2, t) is a (k,N, d)2 for some d with dual distance
t+ 1.

Since linear codes have been studied for a long time, there are a lot of information about
them, so in some cases it can be enough to work with them and then give the sought value
for orthogonal arrays using the previous lemma.

Some references about correlation immune functions are written by Claude Carlet and
his coauthors [2, 3]. They were looking for minimal weights of CI-functions with given
parameters, and published a table with these values. There were cases when the answer
was unknown. Two of them (k = 12, t = 6 and k = 11, t = 4) were included also as
problems at the NSUCRYPTO International Olympiad in Cryptography [5, 8].

In case t=2 there is a connection between orthogonal arrays and Hadamard matrices.

Theorem 4 (Orthogonal arrays and Hadamard matrices) An OA(4λ, 4λ− 1, 2, 2)
(or equivalently OA(8λ, 4λ, 2, 3)) orthogonal array exists if and only if there exists a
Hadamard matrix of order 4λ.

Already with t=2 arises a serious, basic unsolved problem in discrete mathematics.

Conjecture 5 (Hadamard Conjecture) A Hadamard matrix of order k exists if k is
1, 2 or a multiple of 4.

An important open problem regarding simple orthogonal arrays is due to Claude Carlet.
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Conjecture 6 (Claude Carlet’s Conjecture) For a fixed strength t the minimal size
of the support of k-variable, t-th order correlation-immune functions does not decrease
when k grows.

The statement is trivially true for general orthogonal arrays, since by omitting at most
k− t columns we get new orthogonal arrays with less columns, but with the same number
of rows and strength. The difficulty lies in that we have to produce orthogonal arrays that
do not contain any row multiple times.

We were able to fill out all of the missing entries of the table. Using the solution of the
case k = 11, t = 4 we could give the sought values for further parameters too [7].

One of our results was given by using linear codes, in case k = 13, t = 6 the minimal
number N for which an OA(N, k, 2, t) exists is 1024.

We also used a theorem given by Hedayat, Sloane and Stuffken [6].

Theorem 7 An OA(N, k, 2, 2u) exists if and only if an OA(2N, k + 1, 2, 2u+ 1) exists.

The properties and theorems were stated for orthogonal arrays in general, our task was to
prove that they are also true for simple orthogonal arrays. For solving the problem we used
Bulutoglu’s and Margot’s linear programming method [1], bur for larger parameters the
running time was too long. One of our ideas was to try finding an orthogonal array with
given parameters with a special property. We supposed that it had a given automorphism
group. With this assumption we were able to decrease the number of conditions and as
a result we reduced the running time of the ILP method. We implemented it in Sage [9]
and used SCIP [4] to solve the linear programming problems. Our future goal is to give
the minimum value in other unsolved cases and also try to solve the Conjecture of Claude
Carlet.
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pituksari@gmail.com

1 Introduction

In coding theory, a covering code is a subset C ⊂ GF (q)n such that every element of
GF (q)n is within a fixed distance from C, according to the Hamming metric dH . This
fixed value is the covering radius of the code. In some applications (e.g. in list decoding
or in the generalised football pool problem) it is useful to consider codes with covering
radius R which have the following additional property: for every x ∈ GF (q)n such that
dH(x,C) = R, the number of codewords in C which have Hamming distance exactly R
from x, is at least µ. Such codes are called (R,µ)-MCF codes.
The theory of covering codes is a widely investigated area in coding theory, which has
many applications to other fields of mathematics as well. For instance, there is a well-
known correspondence between linear covering codes and saturating sets in finite projective
spaces. This correspondence can be extended to (ρ+1, µ)-MCF codes and (ρ, µ)-saturating
sets (saturating sets whith a certain extra property). This remark lets us apply geometric
techniques when dealing with MCF codes.
One way to construct a new linear code from existing ones is to take their direct sum. In
this extended abstract, we investigate how this construction affects the parameters of MCF
codes. We also examine the density of the resulting MCF code, which is the generalization
of the density of covering codes, and measures the optimality of the code.

2 MCF codes

We will denote the finite field of order q by GF (q) and the n-dimensional vector space over
GF (q) by GF (q)n. The vectors in GF (q)n are sometimes also called words. The projective
space PG(n− 1, q) arises from the vector space GF (q)n:

PG(n− 1, q) = (GF (q)n\{0})/ ∼,
where ∼ denotes the following equivalence relation: u ∼ v if and only if u = λv with some
0 6= λ ∈ GF (q).
We now give some basic definitions from coding theory.

Definition 1 C is a linear [n, k]q-code if it is a k-dimensional subspace of GF (q)n. The
elements of the code are called codewords. The parameters n and k are also referred to
as the length and the dimension of the code, respectively. The codimension of the code is
d = n− k.

Definition 2 Let C be a linear [n, k]q-code. M ∈ GF (q)(n−k)×n is a parity check matrix
of C if

c ∈ C ⇔ c ·MT = 0.
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To measure the difference between words in GF (q)n we use the following notion of distance,
which is indeed a metric on GF (q)n:

Definition 3 Let x and y be two vectors in GF (q)n. Their Hamming distance dH(x, y)
is the number of their different coordinates.

Definition 4 Let C be a linear [n, k]q-code and R a positive integer. C is R-covering if
for every word y ∈ GF (q)n there is a codeword x ∈ C such that the Hamming distance
dH(x, y) ≤ R. The covering radius of C is the smallest R such that C is R-covering.

For a word x and an integer R let S(x,R) be the closed Hamming ball with radius R and
centered in x:

S(x,R) = {y ∈ GF (q)n : dH(x, y) ≤ R}.
We are now ready to define MCF codes:

Definition 5 A linear [n, k]q-code C is (R,µ)-MCF (multiple covering of the farthest-off
points) if the covering radius of C is R and for every y ∈ GF (q)n such that dH(y, C) = R,
the value |S(x,R) ∩ C| is at least µ.

Let
V = {x1, x2, . . . , xN(C)}

be the set of vectors in GF (q)n with distance R from C. We define the µ-density of C as
follows:

γµ(C) =

∑N(C)
i=1 |S(xi, R) ∩ C|

µN(C)
.

Clearly, the µ-density of an (R,µ)-MCF code is at least 1. If equality holds, then every
word which has distance R from the code, is covered by exactly µ Hamming balls of radius
R around the codewords. A code for which this holds is called APMCF (almost perfect
MCF) in the literature. We also introduce the notation AAPMCF (asymptotically almost
perfect MCF): this means that the µ-density of the code tends to 1, when q tends to
infinity.
MCF codes can be described as geometric objects as follows. Suppose we have a code C,
which has length n and codimension d, and let us take a parity check matrix of C. Note
that if we multiply a column of the matrix with some 0 6= λ ∈ GF (q), we still have a
parity check matrix of the same code. Due to this observation, we can look at the columns
of the matrix as n points in the projective space PG(d−1, q), given by their homogeneous
coordinates. As shown in [1], if we start from an (R,µ)-MCF code, the point set S that
we get this way, has the following properties:

• R− 1 is the smallest number such that the (R− 1)-dimensional subspaces generated
by R points of S cover the whole space PG(d− 1, q), and

• if a point X is not covered by any (R− 2)-dimensional subspace defined by S, then
the number of (R− 1)-dimensional subspaces defined by R points of S containing X
is at least µ (counted with multiplicity).

These structures are known under the name (R− 1, µ)-saturating sets. One example is an
oval in PG(2, q) (q odd), which is a

(
1, 12(q − 1)

)
-saturating set of q+1 points. This means

that there are at least 1
2(q − 1) chords of the oval through any point not on the oval. The

reader can find many other examples in [2].
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3 Results and discussion

We will use the following notations:

• sq(d,R, µ) is the minimum length of an (R,µ)-MCF code of codimension d.

• s∗q(d,R, µ) is the minimum length of an (R,µ)-APMCF code of codimension d.

• s∼q (d,R, µ) is the minimum length of an (R,µ)-AAPMCF code of codimension d.

Theorem 6 summarizes our main results.

Theorem 6 1. sq(d+ d′, R+R′, µµ′) ≤ sq(d,R, µ) + sq(d
′, R′, µ′)

2. s∗q(d+ d′, R+R′, µµ′) ≤ s∗q(d,R, µ) + s∗q(d
′, R′, µ′)

3. s∼q (d+ d′, R+R′, µµ′) ≤ s∼q (d,R, µ) + s∼q (d′, R′, µ′)

By induction on k we get the following:

Collorary 7 1. sq(
∑k

i=1 di,
∑k

i=1Ri,Π
k
i=1µi) ≤

∑k
i=1 sq(di, Ri, µi)

2. s∗q(
∑k

i=1 di,
∑k

i=1Ri,Π
k
i=1µi) ≤

∑k
i=1 s

∗
q(di, Ri, µi)

3. s∼q (
∑k

i=1 di,
∑k

i=1Ri,Π
k
i=1µi) ≤

∑k
i=1 s

∼
q (di, Ri, µi)

For the proof of Theorem 6 we need the following lemma from [1]:

Lemma 8 Let C be a linear code of length n and codimension d and let M ∈ GF (q)d×n

be the parity check matrix of C. Then C is (R,µ)-MCF if and only if R is the smallest
integer such that every x ∈ GF (q)d can be written as a linear combination of at most R
columns of M and if x is not a linear combination of at most R− 1 columns, then is can
be written as a linear combination of R columns in at least µ ways.

Proof of Theorem 6: Let C be an (R,µ)-MCF code of length n and codimension d,
and let C ′ be an (R′, µ′)-MCF code of length n′ and codimension d′. Let us define a new
code B as their direct sum:

B = C ⊕ C ′ = {cc′ : c ∈ C, c′ ∈ C ′}.

Clearly, the length of B is n+n′ and the dimension of B is (n− d) + (n− d′) = (n+n′)−
(d + d′), so the codimension of B is d + d′. We show that B is an (R + R′, µ + µ′)-MCF
code.
It is easy to see that the parity check matrix of B admits the form

N =

(
M 0
0 M ′

)
,

where M is the parity check matrix of C and M ′ is the parity check matrix of C ′.
Suppose that x ∈ GF (q)d+d

′
. Then it can be partitioned as x = uv, u ∈ GF (q)d, v ∈

GF (q)d
′
. By our hypotheses, u is a linear combination of at most R columns of M and v

is a linear combination of at most R′ columns of M ′. Putting these columns together we
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get at most R + R′ columns of N such that their sum is x. We still need that R + R′ is
the smallest integer with this property, but this follows from the fact that R was smallest
for C and R′ was smallest for C ′.
Furthermore, if x cannot be written as a linear combination of R + R′ − 1 columns of
N , then u is not a linear combination of R − 1 columns of M , and v is not a linear
combination of R′− 1 columns of M ′. This implies that there are at least µ ways to write
u using columns of M , and there are at least µ′ ways to write v using columns of M ′. So
we can combine these in at least µµ′ ways. This completes the proof of the first statement
of the theorem.
For the second and third part, we need the next claim, the proof of which is now omitted.

Claim 9
γµµ′(C ⊕ C ′) = γµ(C)γµ(C ′).

This claim implies that if C and C ′ are both APMCF codes, then C⊕C ′ is also APMCF,
and similarly, if C and C ′ are both AAPMCF codes, then C ⊕C ′ is also AAPMCF, since
1 · 1 = 1.

We have seen that MCF codes correspond to multiple saturating sets in projective spaces.
So what does the above direct sum construction look like in the geometric setting? Suppose
that C is an [n, n−d]q code and C ′ is an [n′, n′−d′]q code. Let us denote the corresponding
point sets in PG(d − 1, q) and PG(d′ − 1, q) by S(C) and S(C ′), respectively. One can
prove that the point set S(C ⊕ C ′) corresponding to the code C ⊕ C ′ can be obtained by
taking a (d− 1)-dimensional projective subspace U and a (d′ − 1)-dimensional projective
subspace V in PG(d+ d′ − 1, q) that are skew to each other, such that U containes S(C)
and V contains S(C ′). Then S(C ⊕ C ′) is projectively equivalent the disjoint union of
S(C) and S(C ′).
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The crossing number of a graph G, cr(G), is the minimum number of crossings (cross-
ing points) over all drawings of G. The pair-crossing number, pcr(G), is the minimum
number of pairs of crossing edges over all drawings of G. In an optimal drawing for cr(G),
any two edges cross at most once. Therefore, it is not easy to see the difference between
these two definitions. Indeed, there was some confusion in the literature between these two
notions, until the systematic study of their relationship [PT00a]. Clearly, pcr(G) ≤ cr(G),
and in fact, we cannot rule out the possibility, that cr(G) = pcr(G) for every graph G.
Probably it is the most interesting open problem in this area. From the other direction,
the best known bound is cr(G) = O(pcr(G)3/2 log pcr(G) [KT21].

The odd-crossing number, ocr(G), is the minimum number of pairs of edges that
cross an odd number of times, over all drawings of G. Clearly, for for every graph G,
ocr(G) ≤ pcr(G) ≤ cr(G). According to the (weak) Hanani-Tutte theorem [C34],
[PSS07], if ocr(G) = 0, then G is planar, that is, ocr(G) = pcr(G) = cr(G) = 0. It was
shown in [PSS07] that for k = 1, 2, 3, if ocr(G) = k, then ocr(G) = pcr(G) = cr(G) = k.
There are examples where ocr is different from pcr and cr, there is an infinite family of
graphs with ocr(G) < 0.855 · pcr(G) [T08], [PSS08]. From the other direction we only
have pcr(G) < 2ocr(G)2 [PT00a].

In [PT00b] some further variants were introduced, in order to study the role of crossings
between adjacent edges. For each of cr, pcr, ocr, they introduced three counting rules:
Rule +: Only those drawings are considered, where adjacent edges cannot cross.
Rule 0: Adjacent edges can cross and their crossings are counted as well.
Rule −: Adjacent edges can cross and their crossings are not counted.

Combining these rules with the three crossing numbers, we get nine possibilities. But
it is easy to see that cr+ = cr [PT00b]. On the other hand, regarding Rule + for the odd-
crossing number, it seems more natural to assume that adjacent edges cross an even number
of times than to assume that they do not cross at all. So, let ocr∗(G) be the minimum
number of odd-crossing pairs of edges over all drawings of G where adjacent edges cross an
even number of times. Therefore, we have nine versions, see the table below. In this table,
values do not decrease if we move to the right or up, and it was shown in [PSS08] that
cr(G) < 2ocr−(G)2. On the other hand, there are graphs G, where ocr−(G) < ocr(G)
[FPSS11].

Rule –

Rule 0

Rule +

cr(G)

cr−(G)

pcr+(G)

pcr(G)

pcr−(G)

ocr∗(G) ≤ ocr+(G)

ocr(G)

ocr−(G)
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The Crossing Lemma, discovered by Ajtai, Chvátal, Newborn, Szemerédi [ACNS82]
and independently by Leighton [L84] is definitely the most important inequality for cross-
ing numbers.

Crossing Lemma If a simple graph G of n vertices has m ≥ 4.5n edges, then cr(G) ≥
1

60.75
m3

n2 edges.

The bound is tight, apart from the value of the constant [PT97]. The constant above
follows from the beautiful probabilistic argument of Chazelle, Sharir and Welzl [AZ04].
This argument works for all nine versions of the crossing number [PT00b]. For the classical
crossing number, cr(G), the constant was improved in three steps [PT97], [PRTT06], the

best bound is due to Ackerman [A19], cr(G) ≥ 1
29

m3

n2 , when m ≥ 7n.

The only improvement for any other version is a result of Ackerman and Schaefer
[AS14], pcr+(G) ≥ 1

34.2
m3

n2 , when m ≥ 6.75n. For all other versions of the crossing number,
the constant 60.75 is the best we have.

In this note we get an improvement for two other versions, ocr+ and ocr∗.

Theorem 1 Suppose that G has n vertices andm ≥ 6n edges. Then ocr+(G) ≥ ocr∗(G) ≥
1
54

m3

n2 .

Our approach is very similar to all previous improvements, mentioned above. The first
step is to find many crossings in sparse graphs. Then this bound is applied for a random
subgraph of G to get the general bound.

A graph G is called k-planar if it can be drawn in the plane such that there are at most
k crossings on each edge. Such a drawing is called a k-plane drawing. Let mk(n) denote
the maximum number of edges of a k-planar graph of n vertices.

Clearly, m0(n) = 3n− 6. It is known that m1(n) = 4n− 8 for n ≥ 12, m2(n) ≤ 5n− 10
and it is tight for infinitely many values of n, [PT97], m3(n) ≤ 5.5n−11, m4(n) ≤ 6n−12,
which are tight up to an additive constant [PRTT06], [A19].

We prove an odd-even version of these results. A graph G is called k-odd-planar if it
can be drawn in the plane such that any edge is crossed an odd number of times by at
most k other edges.

Let modd
k (n) denote the maximum number of edges of a k-odd-planar graph. Such a

drawing is called a k-odd-plane drawing. Clearly, we have modd
k (n) ≥ mk(n) and by the

weak Hanani-Tutte theorem [C34], [PSS07], we have modd
0 (n) = 3n− 6.

Theorem 2 For any n, k ≥ 1 we have

modd
k (n) ≤ mk(n) + k(n− 1).

We do not think that our bounds are tight. We cannot even rule out the possibility,
that modd

k (n) = mk(n) for every n, k.

A (multi)graph G, together with its drawing D in the plane, is called topological
(multi)graph. Let G be a topological multigraph, e an edge. The pieces of e in small
neighborhoods of its endpoints are called endings of e and denoted by e+ and e−. The
rotation system is the cyclic order of adjacent edges, or endings, at each vertex. A cyclic
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order is always clockwise. Two edges form an odd pair (resp. even pair) if they cross and
odd (resp. even) number of times. An edge is called even if it is crossed an even number
of times by every other edge and it is odd otherwise.

According to the weak Hanani-Tutte theorem, if a graph can be drawn so that any
two edges cross an even number of times, then it is planar. This result has many proofs,
one of the nicest and simplest is due to Pelsmajer, Schaefer and Štefankovič [PSS07]. The
proof is based on the following lemma:

Lemma 0. [PSS07] Let G be a topological multigraph, which has one vertex and n edges
(loops). Suppose that every edge is even. Then, G can be redrawn such that the rotation
system is the same and there is no edge crossing.

Theorem 2 is a consequence of the following generalization. We omit the proofs here.

Lemma 3 Let G be a topological multigraph, which has one vertex and n edges (loops).
Then, G can be redrawn such that (i) the rotation system is the same (ii) even pairs do
not cross, (iii) odd pairs cross once, and (iv) there are no self-crossings.

Remarks. 1. The statement of Lemma 3 can be found in [PSS07] as a remark. 2. Another
possible proof is the following. Take a drawing of G which has the same rotation system
and under this condition the minimum number of crossings. It can be shown that this
drawing satisfies the conditions, but we did not find this method easier.

Proof of Theorem 1 We have m0(n) = 3n− 6, and by Theorem 2, modd
1 (n) ≤ m1(n) +

n− 1 = 5n− 9. Therefore, it can be shown by induction on the number of edges that for
any graph with n vertices and m edges, ocr∗(G) ≥ ocr(G) ≥ 2m− 8n.

Let G be a graph of n vertices and m ≥ 6n edges, drawn in the plane realizing
ocr∗(G), that is, any two adjacent edges cross an even number of times and there are
ocr∗(G) pairs of edges that cross an odd number of times. Take a random subgraph
G′ such that we take each vertex independently with probability p = 6n/m. Let n′, m′,
and x(G′) denote the number of vertices (resp. edges) of G′, and the number of odd-
crossing pairs of edges in G′, in the inherited drawing. We have E(n′) = pn, E(m′) =
p2m, E(ocr∗(G′)) ≤ E(x(G′)) = p4ocr∗(G). For G′ we have ocr∗(G′) ≥ 2m′ − 8n′,
therefore, p4ocr∗(G) ≥ 2p2m− 8pn. Taking p = 6n/m, we get that ocr∗(G) ≥ 1

54
m3

n2 .
Remark. Combining Theorem 2 and the bounds for mk(n) we obtain that modd

1 (n) ≤
5n−9 and modd

2 (n) ≤ 7n−12. In the proof of Theorem 1 we used only the first inequality,
the second would not help. However, if we could prove that modd

2 (n) ≤ 6.8n + c then we
would get an improvement in Theorem 1 as well.
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[KT21] J. Karl, G. Tóth, A slightly better bound on the crossing number in terms of the
pair-crossing number. arxiv

[L84] F. T. Leighton, New lower bound techniques for VLSI, Math. Systems Theory 17
(1984), 47-70.

[LT79] R. J. Lipton, R. E. Tarjan: A separator theorem for planar graphs, SIAM Journal
on Applied Mathematics 36 (1979), 177-189.

[S17] M. Schaefer: Crossing Numbers of Graphs. CRC Press Published December 5, 2017.
350 Pages.
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number are not the same, Discrete and Computational Geometry 39 (2008), 442-454.
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Semialgebraic sets as ranges of two-distance

graphs

Péter Ágoston

1 Introduction

We call a graph a unit distance graph (UDG) if it can be drawn in R2 so that the vertices
are represented by distinct points and all neighbouring pairs of vertices have Euclidean
distance 1. We call such a drawing a unit distance representation (UDR) of the graph.
Unit distance graphs are a well-known notion in combinatorial geometry.[3, 5]

From now on, we suppose that all graphs are finite and simple unless stated otherwise.

We will be considering only finite and simple graphs. A graph G is an edge-bicoloured
graph (EBG) if there is a fixed colouring of its edges with two colours, e.g. red and blue
(denote the sets of red and blue edges of G by Er(G) and Eb(G), respectively). Now we
define a notion similar to UDGs: an EBG G is a (1, d)-graph for some d ∈ R≥0 if there is
an injective mapping of its vertices into the plane such that those connected with red, or
blue edges go to points with distance 1, and d respectively. Such an embedding is called a
(1, d)-representation of G.

For an EBG G, define its range ran(G) as the set of numbers for which G is a (1, d)-
graph. Let the range of a graph be the union of the ranges of its edge-bicolourings.

We call a graph with or without an edge-bicolouring a two-distance graph, if its range
is not empty. Two-distance graphs have been studied in the past in several papers. [5][6]

Our main result is that (with respect to some boundedness criteria) the possible ranges
of EBGs are exactly the semialgebraic subsets of R (finite unions of intervals with algebraic
endpoints).

First, some basic properties of the ranges of EBGs:

1. For EBGs H ⊆ G (with the inherited colouring), ran(G) ⊆ ran(H).

2. For EBGs G1 and G2, we have ran(G1 tG2) = ran(G1) ∩ ran(G2).

ran(G) =
{√

3
}

ran(G) =
[
1
2 ,+∞

)
ran(G) = (0, 2] \ {1} ran(G) = {1, 2, 3, 4}

Figure 1: Four two-distance graphs and their ranges

Developments in Computer Science, Budapest, pages 65 - 68, 2021.

65



3. For any EBG G, denote by G∗ the EBG obtained by inverting the colouring (Eb(G) =
Er(G

∗) and Er(G) = Eb(G
∗)); then we get ran(G∗)∩R>0 =

{
d ∈ R>0 | 1d ∈ ran(G)

}
.

And finally, a minor remark to show that it does not really make a difference whether
we define the range of an EBG on [0,+∞) or on (0,+∞):

4. For any EBG G, 0 ∈ ran(G)⇔ ((Eb(G) = ∅) ∧ (G is a UDG))⇔ ran(G) = [0,+∞).

It is also known that deciding whether a number d is in the range of an EBG or not is
R-complete, since deciding whether a graph is a UDG or not is R-complete. [7]

χ
(
R2
)

denotes the minimal number of colours needed to colour R2 without a monochro-
matic pair of distance 1. Finding χ

(
R2
)

is a famous problem [4] and Bukh conjectured
[1] that by also forbidding a transcendental distance, we get the same number. If true,
this could make it interesting to find graphs whose range only contains a transcendental
number. But such graphs do not exist by Proposition 1 below.

Take the set of solutions (x1, ..., xd) to a finite sequence of polynomial equations and
inequalities of the form p(x1, ..., xd) = 0 and p(x1, ..., xd) > 0. If a set can be generated as
the union of such sets, it is called a semialgebraic set. S ⊆ R is semialgebraic exactly if it
can be obtained as the union of finitely many intervals with algebraic endpoints.

The Tarski–Seidenberg theorem [2, Theorem 1.5][ has the following easy consequence
as pointed out by Miklós Laczkovich (personal communication):

Proposition 1 The range of an EBG G is always a semialgebraic set.

Our main result says this condition is tight if ran(G) has positive lower and upper
bounds:

Theorem 1 For a set S ⊆ R>0 with a positive lower and upper bound (λ and υ), there
exists an EBG G with ran(G) = S if and only if S is semialgebraic.

2 Sketch of the proof of Theorem 1

Call a polynomial p(x) even if all of its coefficients with odd index are 0, that is, if
p(x) = p(−x). Also, for any polynomial p and 0 < L ≤ U < +∞, define

S0(p, L, U) = {x ∈ R>0| (p(x) ≥ 0) ∨ (x ≤ L) ∨ (x ≥ U)} and

S1(p, L, U) = {x ∈ R>0| (p(x) > 0) ∨ (x ≤ L) ∨ (x ≥ U)} (Figure 2).

L0 U L0 U
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Figure 2: A polynomial p(x) with S0 (p, L, U) (left) and S1 (p, L, U) (right) denoted by
bold

Proposition 2 For any even polynomial p ∈ Z[x] with integer coefficients and a negative
leading coefficient, there exists an EBG G (p), whose range is S0 (p, 0,+∞).

Sketch of the proof: We define partly virtual EBGs (PVEBG), in which we also allow
directed green edges, divided into groups. In a (1, d)-representation of a PVEBG, we
require green edges from the same group to have the same vector, besides the criteria for
EBGs and we define its range analogously to EBGs. In case some boundedness conditions
apply, an EBG with the same range can be created by replacing pairs of green edges from
the same group by red grids (grids consisting only of red edges).

The most crucial component of creating G(p) is graph A (Figure 3).

a1,0

a1,2N

a1,1 a1,2

a1,3

a1,4

a1,5

a1,6
a1,2N−1

0 1

0

1

0

1

01

a1,0

a1,2N

a1,1

a1,2

a1,3

a1,4

a1,5

a1,6

a1,2N−1

0

0

0

1

1

1

1

aj,0

aj,2N

aj,1

aj,2

aj,3

aj,4

aj,5

aj,6

aj,2N−1

j − 1

j − 1

j − 1

j

j

j

j

aj,2N+1

j − 2

Figure 3: The components of A: A1 (left), the only (1, d)-representations (up to isometry)
of A1 (middle) and of Aj (2 ≤ j ≤ deg(p)) (right) (N is large enough and groups are
denoted by numbers).

For small enough d, A has exactly one (1, d)-representation up to transformations which
are isometries on the components. If we draw the complex plane so that ~a1,0a1,1 = 1 and
~a1,1a1,2 = ε, the members of the group marked by j will have vector εj and |N · (1 + ε)| =

d. This helps constructing points having distance of some even polynomial of d, and ulti-
mately, constructing G(p).

With a very small modification of G(p), we get the following result:

Proposition 3 For any even polynomial p ∈ Z[x] with a negative leading coefficient, there
exists an EBG G′ (p), whose range is S1(p, 0,+∞).

And by a significant modification of any EBG G, we can prove the following proposi-
tion:

Proposition 4 For an EBG G, positive rational numbers La, Ua and arbitrary real num-
bers Lb, Ub (Lb < La < Ua < Ub), if ran(G)∩ (L,U ] 6= ∅, then there exists an EBG GUa,Ub

La,Lb

for which ran
(
GUa,Ub
La,Lb

)
∩ (Lb, Ub) = ((0, L] ∪ ran(G) ∪ [U,+∞)) ∩ (Lb, Ub).
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Now we will use the following algebraic proposition:

Proposition 5 Take a semialgebraic set σ ⊆ [λ, υ]. For some n ∈ N there exist even
polynomials p1, ..., pn+1 with integer coefficients and a negative leading coefficient, numbers
L1, ..., Ln, U1, ..., Un ∈ Q>0 and numbers ζ1, ..., ζn+1 ∈ {0, 1} so that

σ =

(
n⋂
i=1

Sζi (pi, Li, U,i)

)
∩ Sζn+1 (pn+1, 0,+∞).

Using the notations of Proposition 5, with the help of Proposition 4, we can construct
(1, d)-graphs G (pi)

υ,Ui

λ,Li
for 1 ≤ i ≤ n and ζi = 0, while in case of ζi = 1, we construct

G′ (pi)
υ,Ui

λ,Li
, whose range coincides with Sζi(pi, Li, Ui) on the interval [λ, υ]. And finally, we

can take G′ (pn+1), whose range is empty outside of [λ, υ], thus the intersection of the
ranges of these graphs is σ because of Proposition 5. Thus their disjoint union has σ as
its range. So all semialgebraic sets from [λ, υ] are the range of some EBG.

Now we will finish with a few open problems:
1. Can we construct such a graph for all semialgebraic sets (without the boundedness)?
2. What are the possible ranges of non-coloured graphs?
3. What about graphs coloured by more than two colours?
4. What is the situation in more than 2 dimensions?
5. What if we don’t require the images of the vertices to be distinct?

Acknowledgement. I thank Dömötör Pálvölgyi for the problem and for helpful discus-
sions and Miklós Laczkovich for proving Proposition 1.
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1 Introduction

A convex geometric hypergraph (cgh for short) is a family of subsets of a set of points
in general position in the plane. A convex geometric 3-hypergraph (3-cgh for short) is a
3-uniform convex geometric hypergraph. For a given configuration F of the edges, the
extremal function ex�(n, F ) is the maximum number of edges in an F -free cgh on n
vertices.

Two edges of a 3-cgh can determine eight different configurations regarding their in-
tersection pattern. These configurations are shown in Figure 1, which is taken from [2].

Füredi, Mubayi, O’Neill, and Verstraëte: Extremal problems for pairs of triangles 3

There are a number of di↵erent intersection patterns of pairs of triangles in convex triangle systems,

depicted below:

Figure 1: The eight types of triangle pairs in convex triangle systems

For all of these configurations, Braß [6] has shown the extremal function for convex triangle systems

is either ⇥(n2) or ⇥(n3); the latter arises precisely when the two triangles have no common interior

point. Aronov, Dujmović, Morin, Ooms and da Silveira [2] extensively studied cghs which avoid

combinations of the configurations in Figure 1, and determined many of the order of magnitudes of

the associated extremal numbers. An intersecting convex triangle system is precisely a convex triangle

system not containing M1, and a strongly intersecting convex triangle system is precisely a convex

triangle system containing none of M1, D1 and S1. If F is a set of convex triangle systems, then

we denote by ex�(n,F) the maximum size of a convex triangle system not containing any member

of F . In this language, Frankl, Holmsen and Kupavskii [14] proved ex�(n, {D1,M1, S1}) = ·4(n).

Problem 1.2 asks for ex�(n,F) where F ✓ {M1, D1, S1} and we completely solve this problem using

the following theorem:

Theorem 2. For all n � 3,

ex�(n, F ) =

8
><
>:

·4(n) if F = D1

·4(n) + bn2 cbn�2
2 c if F = S1

·4(n) + n(n�3)
2 if F = M1.

Furthermore, the extremal constructions for this theorem are classified – see the constructions in

Section 2. Using Theorem 2, we obtain the exact value of ex�(n,F) for each F ✓ {M1, S1, D1}:

ex�(n,F) = min
F2F

ex�(n, F ).

Figure 1: Intersection patterns of two triangles, taken from [2]

Braß[1] proved that the extremal function of any of these configurations is either Θ(n2)
or Θ(n3). Füredi, Mubayi, O’Neill and Verstraëte [2] determined the extremal functions
of five of these, namely of M1,M2,M3 and D1, S1 exactly, and of S3 asymptotically. They
also proved that ⌊

n2

4

⌋
− 1 ≤ ex�(n, S2) ≤

23n2

64

and that
3

14
n2 −O(n) ≤ ex�(n,D2) ≤

2n2 − 3n

9
.
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The D2 configuration consists of two triangles that share an edge and have a common
interior point. We determine ex�(n,D2) exactly for all n, and exactly for n ≡ 6 (mod 9).

Theorem 1 The maximum number of edges of a D2-free convex geometric 3-hypergraph
on n vertices is 2

9n
2 + O(n). Moreover, if n ≡ 6 (mod 9), then the maximum possible

number of edges is exactly 2n2−3n
9 .

Note that this matches the upper bound from [2]. Besides describing constructions
with matching lower bounds, we also give two new proofs for the upper bound. We point
out that finding the asymptotics for S2 is still open, and in [2] it is conjectured that
ex�(n, S2) = bn2/4c − 1.

Our result can be generalised to r-uniform cgh’s. Let D2(r) be the configuration formed
by two convex r-gons that share an edge and have a common interior point. Then similarly
to Theorem 1 we can show that ex�(n,D2(r)) = 2n2

r2
+O(n).

Convex geometric hypergraphs are closely related to ordered hypergraphs. There have
been a lot of research done on both topics. For an overview, we refer to Braß[1], Pach
[3, 4], and Tardos [5].

2 Proof of Theorem 1

Let H be a 3-cgh on a set V of n vertices. Since we are only interested in the intersection
pattern of the edges, we may assume that V is the vertex set of a regular convex n-gon.
Assume that the edges are ordered triples (a, b, c) such that a, b, c are in this cyclic order
according to the positive orientation.

We define the length |γ| of an oriented arch γ as the number of vertices in the interior
of γ plus one. (So that the length of an arch between consecutive vertices is 1.) The
complement of every triangle (a, b, c) is the disjoint union of three open arcs γa,b, γb,c and
γc,a such that |γa,b|+ |γb,c|+ |γc,a| = n. For every edge (a, b, c) ∈ H we associate the triple
of arcs (γa,b, γb,c, γc,a) with the edge (a, b, c). Observe that H is D2-free if and only if for
any two distinct edges (a, b, c), (a′, b′, c′) we have {γa,b, γb,c, γc,a} ∩ {γa′,b′ , γb′,c′ , γc′,a′} = ∅.
In other words, H is D2-free if and only if every open arc bounded by two vertices a, b ∈ V
with a 6= b is associated with at most one edge. (Note that for every two vertices with
a 6= b there are two open arc bounded by a and b.)

Therefore, by finding 2
9n + O(1) pairwise disjoint triples of disjoint elements (x, y, z)

such that x, y, z ∈ N and x + y + z = n, we can find 2
9n

2 + O(n) triangles without a D2

configuration. Indeed, for each such triple (x, y, z) there are n triangles (a, b, c) such that
(|γa,b|, |γb,c|, |γc,a|) = (x, y, z). They are the cyclic shifts of a fixed triangle, as shown on
Figure 2.

Thus, the following claim provides 2
9n

2 +O(n) triangles without a D2 configuration.

Claim 2 Suppose that n = 9k + 6. Then we can find 2
9n − 1

3 pairwise disjoint triples of
disjoint elements (x, y, z) such that x, y, z ∈ N and x+ y + z = n

Proof: Consider the sets of triples

A = {(i, 3k + 2 + i, 6k + 4− 2i)|i ∈ {1, . . . , k}}

Gábor Damásdi, Nóra Frankl
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Figure 2: 3 cyclic shift of the triple (4, 6, 11) with n = 21

and

B = {(k + i, 2k + i+ 1, 6k + 5− 2i)|i ∈ {1, . . . , k + 1}}.
Then A ∪ B contains 2k + 1 triples. The sum of the numbers in each of these triples

is 9k + 6 = n. It is not hard to see that these triples are pairwise disjoint. Numbers from
[1, 2k + 1] appear in the first position of the triples, numbers from [2k + 2, 4k + 2] appear
in the second position and numbers from [4k + 3, 6k + 3] in the third. Overall, we found
2k+ 1 = 2

9n− 1
3 disjoint triples. �

By the the observation that every open arc bounded by two vertices a, b ∈ V can be
associated with at most one edge, the asymptotic upper bound on ex�(n,D2) follows from
the claim below, for which we give two different proofs.

Claim 3 Let M be the multiset that contains n copy of each integer 1 ≤ i ≤ n− 2. Then
M contains at most 2

9n
2 + 2n pairwise disjoint triples (x, y, z) for which x+ y + z = n.

Proof: Suppose we have found m triples. Let S be the sum of the numbers appearing
in the triples with multiplicity. Since we have 3m numbers and each appears at most n
times, the largest number appearing is at least d3mn e. Therefor S is at least n times the

sum of the first b3mn c positive integers. Hence, S ≥ n
(b3m/nc

2

)
. In each triple the sum of

the numbers is n, thus m ≥ S
n ≥

(b3m/nc
2

)
≥ 1

2(9m
2

n2 − 9m
n ). After rearranging we obtain

m ≤ 2
9n

2 + 2n. �

Proof: We define a fractional edge cover of the hypergraph of all triples {x, y, z} with
x+ y + z = n as follows. Let

w(i) := 2
3 − i

n if i ≤ 2n
3

w(i) := 0 otherwise.

For n ≡ 6 (mod 9) have
∑

iw(i) = 2
9n

2 − 3n. By viewing the collection of disjoint
triples as a matching, this implies the upper bound.

Note that the second proof gives sharp upper bound for n ≡ 6 (mod 9).
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The following question was asked by Sands, Sauer and Woodrow [1] and it is also due
to Erdős:

Conjecture 1 (Erdős-Sands-Sauer-Woodrow) For each n, is there a (least) positive
integer f(n) so that every finite tournament whose edges are coloured with n colours con-
tains a set S of f(n) vertices with the property that for every vertex u not in S there is a
monochromatic path from u to a vertex of S?

The conjecture was recently solved by Bousqueta, Lochet and Thomassé [2]. The ESSW
conjecture has a number of nice applications, for example Gyárfás and Pálvölgyi showed
that it implies the following result of Bárány and Lehel [3]. Every finite subset X of Rd

can be covered by f(d) X-boxes (i.e. each box has two antipodal points in X).

We show the following generalization of Conjecture 1.

Theorem 2 For each n there is a (least) positive integer f(n) so that every finite tour-
nament whose edges are coloured with n colours contains a set S of f(n) vertices with a
partition S = S1 ∪ · · · ∪ Sn such that for every vertex u not in S there is an i such that
there is a monochromatic path of color i from u to a vertex of Si.

1 Proof of Theorem 2.

The closed in-neighbourhood N−(x) of a vertex x ∈ V is {x} ∪ {y|(y, x) ∈ A}. Similarly
the closed out-neighbourhood of a vertex x is {x}∪{y|(x, y) ∈ A}. By extension, N−(S) =
∪x∈SN−(x) and N+(S) = ∪x∈SN+(x) when S is a subset of vertices. We say that a subset
Q of the vertices is dominated if we have already found some vertices V such that there is
a monochromatic path from each vertex of Q to some vertex of V . In this case V is called
the dominating set of Q.

Let us quickly recap the main steps from the proof of Theorem 1 from [1]. First
they carefully define a partition of the vertex set. For each part P they also define a
probability distribution wP on the vertices. Then, they dominate each part of the partition
independently of the other parts using a probabilistic argument. Namely, they show that
we can pick some points using wP and they will dominate P with positive probability.
Also, each part is dominated using edges of just one color. The only reason that the proof
does not immediately work for Theorem 2 is that the dominating sets for the different
parts might intersect.

The following proof of Theorem 2 follows a very similar path. We will also define a
partition of the vertex set and corresponding probability distributions. Then, we will apply
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the probabilistic argument for the parts simultaneously to ensure that the dominating
sets of the parts are disjoint. To be able to ensure disjointness, the partition and the
distributions have to be created a bit more carefully, we have to ensure that a vertex
cannot have too much weight in any of the probability distributions.

The following useful lemma is from [4]:

Lemma 3 If T is a tournament, then there exists a probability distribution w on V (T )
such that w(N−(x)) ≥ 1/2 for each x ∈ V (T ).

The following lemma is a variant of Lemma 3.

Lemma 4 Let T be a tournament and let δ > 0 be a fixed number. If |V (T )| > 1
δ , then

there exists a probability distribution w on V (T ) such that for each x ∈ T one of the
following holds.

• w(x) ≤ 2δ and w(N−(x)) ≥ 1/2

• δ ≤ w(x) ≤ 3δ

Note that the second condition holds for at most 1/δ vertices.
The proof of Lemma 4 is based on an averaging argument. We repeatedly apply Lemma

3 and after each step we throw away the vertices whose weight is too much.

Lemma 5 Let T be a complete multidigraph whose arc set is the union of k quasi-orders
and let δ > 0 be fixed. There exists a probability distribution w on V (T ) and a partition of
V (T ) into sets T1, T2, . . . , Tk, D such that for every i and x ∈ Ti, we have w(x) ≤ 2δ and
w(N−i (x)) ≥ 1/2k and for every x ∈ D we have δ ≤ w(x) ≤ 3δ.

Proof: Take w according to Lemma 4. For every i in [k], let Ti be the subset of vertices
such that w(N−i (x)) ≥ 1/2k. The sets Ti cover those vertices that satisfy the first property
in Lemma 4, so we can extract a partition with the required properties.

Now we are ready to tackle Theorem 2.

Proof: Fix 0 < δ < 1. We will choose its value later. Let I = {∅} ∪
k+1⋃
l=1

[k]l, that is,

sequences of length at most k + 1 whose terms are from [k]. Now for a tournament T
we are going to define a system of subsets of the vertex set {Tj1,...,ji}(j1,...,ji)∈Ind for some
index set Ind ⊂ I. The process that defines these subsets will be similar to a tree traversal
algorithm. For each Tj1,...,ji we will also define a probability distribution wj1,...,ji which is
concentrated on Tj1,...,ji .

We start by setting T∅ = T and we apply Lemma 5 for T∅ to obtain T1, T2, . . . , Tk and
D∅ together with a probability distribution w∅. That is, for every i and x ∈ Ti, we have
w∅(x) ≤ 2δ and w∅(N

−
i (x)) ≥ 1/2k.

Then, as long as possible, we do the following step. We pick a previously not se-
lected Tj1,...,ji from the already defined ones such that j1, . . . , ji are pairwise distinct, and
|Tj1,...,ji | > 1

δ . For such a Tj1,...,ji we apply Lemma 5 to obtain the partition Tj1,...,ji,1, . . . ,
Tj1,...,ji,k, Dj1,...,ji and a probability distribution wj1,...,ji .

From Lemma 4 we know the following:

• |Dj1,...,ji | ≤ 1
δ
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Figure 1: The outcome of the partition process for k = 3 assuming that the size of T3 and
T1,3 is less than 1/δ.

• For every l ∈ [k] and x ∈ Tj1,...,ji,l we have wj1,...,ji(N
−
l (x)) ≥ 1/2k

• wj1,...,ji(x) ≤ 3δ for every x ∈ V (T )

This process terminates in (strictly) less than |I| ≤ kk+2 steps as no index sequence
can be longer than k + 1.

When the process halts we define a partition of the vertex set by taking every set of
the following three kind. Dj1,...,ji-s, Tj1,...,ji-s that have fewer elements than 1

δ and Tj1,...,ji-s
where ji = jl for some l < i. These sets are clearly disjoint, and they cover the vertex
set, since the process halted. Let D denote the union of the Dj1,...,ji-s, let Tsmall denote
the union the Tj1,...,ji-s that have fewer elements than 1/δ and finally let Trep denote the
union of the Tj1,...,ji-s where ji = jl for some l < i.

We dominate each part of the partition. Since each Dj1,...,ji has fewer elements than
1
δ we have |D| ≤ 1

δk
k+2. Similarly |Tsmall| ≤ 1

δk
k+2. We will simply put each vertex from

D ∪ Tsmall into our dominating set of the first color (S1) but we will not use them to
dominate any point other than themselves. So, it remains to dominate the vertices in Trep.

Let Irep ⊂ I be the index set of those Tj1,...,ji-s where ji = jl for some l < i. Let
(j1, . . . , ji) ∈ Irep and consider Tj1,...,ji , Tj1,...,ji−1 and Tj1,...,jl−1

. Note that for each x ∈
Tj1,...,ji we have wj1,...,ji−1(N−ji (x)) ≥ 1

2k . Hence, if we can find Sj1,...,ji ⊂ V (T ) such that

wj1,...,ji−1(N+
ji

(Sj1,...,ji)) > 1 − 1
2k , then Tj1,...,ji is dominated by Sj1,...,ji . We will pick the

Sj1,...,ji-s randomly and we will show that the probability of wj1,...,ji−1(N+
ji

(Sj1,...,ji)) >

1− 1
2k for each (j1, . . . , ji) ∈ Irep and having all the Sj1,...,ji-s pairwise disjoint is positive.

Let 0 < ε < 1 be fixed, we will choose its value later. Let g(ε) = b ln(ε)

ln(1− 1
2k

)
c+ 1 and let

Sj1,...,ji be a multiset of g(ε) elements picked independently at random according to the
distribution wj1,...,jl−1

. For every vertex x ∈ Tj1,...,ji−1 , P (x ∈ N+
ji

(S)) ≥ 1− (1− 1
2k )g(ε) ≥

1− ε. Therefore, by linearity of expectation,

E(wj1,...,ji−1(N+
ji

(Sj1,...,ji))) ≥
∑

x∈V (T )

wj1,...,ji−1(x) · (1− ε) ≥ 1− ε.

Let X be the random variable
∑

(j1,...,ji)∈Irep
wj1,...,ji−1(N+

ji
(Sj1,...,ji)). Clearly,
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E(X) ≥ |Irep|(1− ε).
Let Y be the indicator variable of the event that the multiset

⋃
(j1,...,ji)∈Irep

Sj1,...,ji does

not contain a vertex of multiplicity more than one. Let us consider the random variable
X ·Y . If we can show that there is an event when X ·Y > |Irep|− 1

2k , then we are done. This
would imply that Y = 1, that is the Sj1,...,ji-s are disjoint. Since wj1,...,ji−1(N+

ji
(Sj1,...,ji)) ≤

1 for each (j1, . . . , ji) ∈ Irep, it would also mean that wj1,...,ji−1(N+
ji

(Sj1,...,ji)) > 1− 1
2k for

each (j1, . . . , ji) ∈ Irep.
The rest of the proof is a standard probabilistic calculation. With the right choice of

ε and δ we can show that E(XY ) ≥ |Irep| − 1
2k . Hence, there is an event when X · Y >

|Irep| − 1
2k , finishing the proof.

2 Final remarks

The main motivation behind Theorem 2 was that it can be applied for geometric hyper-
graph coloring problems. Using Theorem 2 it can be proved that there is a n0 such that
for any finite point set P in the plane and any convex set C the points of P can be three-
colored such that there is no translate of C containing at least n0 points of P , all of the
same color.
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Abstract

In quantum information theory, a quantum graph or operator system plays the
role of the confusability graph from classical information theory. Classical graph pa-
rameters extend to operator systems by letting projections play the role of vertices,
and orthogonality the role of non-adjacency. We review the definition of connected
operator systems, and define the number of connected components for disconnected
operator systems. This extends the classical graph-theoretic equivalent. We also show
how these methods help to study the independence number of a quantum graph.

1 Introduction

1.1 Classical information theory

In classical information theory, a noisy channel N from an input alphabet X to an output
alphabet Y is a function that sends each input from X to a probability distribution on Y .

N : x→
(
p(y|x

)
y∈Y

.

An equivalent model is as a linear map N : CX → CY that sends each basis vector of
CX to a probability distribution vector in CY . That is,

N (x) =
(
p(y|x)

)
y∈Y

.

For a fixed choice of basis, noisy channels from X → Y are in one-to-one correspondence
with matrices CX → CY that map probability distributions to probability distributions.

One is typically interested in the accuracy of the information received from a noisy
channel. To this end, Shannon [3] initated the study of zero-error capacities by introducing
the confusability graph of a channel. The confusability graph G of a noisy channel N : X →
Y is the graph on vertex set X with edge set

E(G) =
{
{xi, xj} : xi 6= xj and ∃y ∈ Y, p(y|xi) · p(y|xj) 6= 0

}
.

Intuitively, two vertices of X are connected by an edge if they can be “confused” by the
channel. By construction, the confusability graph of a channel on X is a simple graph on
the vertex set. Conversely, given a simple graph G on vertex set X, there exists an output
alphabet Y and a channel N : X → Y so that G is the confusability graph of N . However,
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the alphabet Y and the channel N are not necessarily unique; several channels can give
rise to the same confusability graph.

Shannon showed that various measures of channel capacity depend only on the confus-
ability graphs. One such measure of interest is the independence number of a graph, which
indicates the maximum number of input letters that can be transmitted by the channel
without “confusion”.

1.2 Quantum information theory

While a classical channel is a linear map between vector spaces, a quantum channel is a
linear map between matrix algebras.

Definition 1 A quantum channel is a linear map φ : Mn →Md that satisfies the follow-
ing.

(i) It is completely positive: It has a Kraus decomposition φ(X) =
∑r

i=1EiXE
∗
i , for

some matrices (called Kraus operators) E1, · · · , Er ∈Md,n.

(ii) It is trace-preserving:
∑r

i=1E
∗
i Ei = In ∈Mn.

Duan, Severini, and Winter [2] introduced the quantum confusability graph as an analog
of the classical case.

Definition 2 [2] The quantum confusability graph of a quantum channel φ : Mn → Md

with Kraus decomposition φ(X) =
∑r

i=1EiXE
∗
i is the set

S = span{E∗i Ej : i, j = 1, · · · , r}.

Although the Kraus operators of a quantum channel are not unique, the confusability
graph is independent of the choice of Kraus operators. An operator system in Mn is a
linear subspace closed under adjoints and containing the identity. It is clear from the
definition that every quantum confusability graph is an operator system. The converse
correspondence is well-known.

Claim 3 Every operator system in Mn arises as the confusability graph of some quantum
channel.

Just as in the classical case, given an operator system S, its associated channel φ and
output algebra Md are not unique; different channels can give rise to the same operator
system.

2 Extending connectivity to quantum graphs

Given a classical graph G on n vertices, its associated operator system in Mn is defined as

SG = {Ei,j : i = j, or ij ∈ E(G)}.

Several classical graph parameters like the independence number or chromatic number
can be generalised to operator systems. In [1], the authors define connectivity for operator
systems.
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Definition 4 [1] An operator system S ⊂Mn is said to be connected if one of the following
equivalent conditions holds.

(1) For every nontrivial projection P ∈Mn, PS(In − P ) 6= {0}.

(2) For some m ∈ N, Sm = Mn, where Sm = span{A1 · · ·Am : Ai ∈ S}.

The first condition most closely mirrors the classical definition; a classical graph is con-
nected if every nontrivial partition of the vertex set has a crossing edge. While the results
in [1] focus on connected operator systems, our work focuses on disconnected operator
systems.

2.1 Connected components

Since Mn is finite-dimensional, the chain
(
Sm
)
m∈N has to terminate after finitely many

steps at C∗(S), the C∗-algebra generated by S. Thus,

Definition 5 An operator system S ⊂Mn is disconnected if one of the following equiva-
lent conditions holds.

(1) For some nontrivial projection P ∈Mn, PS(In − P ) = {0}.

(2) C∗(S) is a proper subalgebra of Mn.

The first condition is what enables us to define the number of connected components for
an operator system:

Definition 6 The number of connected components of an operator system S is the max-
imal integer l for which there exist projections P1, · · · , Pl such that

(i) P1 + · · ·+ Pl = In, and

(ii) PiSPj = {0} for all i 6= j.

We denote this number by δ(S).

In other words, every matrix of S has a block decomposition with respect to the projections
{P1, · · · , Pl}. Since block decompositions are preserved under matrix products,

Lemma 7 For any operator system S, δ(S) = δ(C∗(S)).

Using the representation theory of finite-dimensional C∗-algebras, we can explicitly com-
pute the number of connected components.

Theorem 8 Every finite-dimensional C∗-algebra A is of the form

A ∼=
k⊕

i=1

Mni ⊗ Imi .

Our first main result is
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Theorem 9 Let S be an operator system and A = C∗(S). If A has a C∗-decomposition
as above, then

δ(S) = δ(A) =

k∑

i=1

mi.

Further, any maximal disconnecting family is of the form

k⋃

i=1

{
Ini ⊗ Ej : Ej ∈Mmi is a rank-1 projection, j = 1, · · · ,mi

}

Intuitively, any maximal block decomposition ofA has to be compatible with its C∗-algebra
decomposition.

3 Further work

The language of C∗-algebras promises to hold interesting applications to quantum chan-
nels. For example, the number of connected components gives us a (sometimes trivial)
lower bound on the independence number. The independence number of an operator sys-
tem S, α(S), is the maximal number of projections {P1, · · · , Pl} such that PiSPj = {0}
for all i 6= j. This closely resembles δ(S), only we do not require the projections to sum
to the identity.

Corollary 10 For any operator system S, α(S) ≥ δ(S).

With a little manipulation, one can obtain an exact result for C∗-algebras.

Corollary 11 For any C∗-algebra A, α(A) = δ(A).
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1 Introduction

Given an incidence structure S and a straight line drawing of S in the plane, one may
ask whether this drawing is the vertical projection of a spatial polyhedral scene. This
is a well studied question in Discrete Geometry which has some beautiful connections
to areas such as Geometric Rigidity Theory and Polytope Theory, see [5] for details.
Moreover, this problem has important applications in Artificial Intelligence, Computer
Vision and Robotics. In this paper we consider symmetric drawings and their vertical
lifting properties.

1.1 Basic definitions and results

A (polyhedral) incidence structure S is an abstract set of vertices V , an abstract set of
faces F , and a set of incidences I ⊆ V × F .

A (d − 1)-picture is an incidence structure S together with a corresponding location
map r : V → Rd−1, and is denoted by S(r). A d-scene S(p, P ) is an incidence structure
S = (V, F ; I) together with a pair of location maps, p : V → Rd, and P : F → Rd,
such that for each face Fj the vertices incident with Fj lie in a hyperplane. (Here P is an
assignment of normal vectors to the faces.) A lifting of a (d− 1)-picture S(r) is a d-scene
S(p, P ), with the vertical projection Π(p) = r.

A lifting S(p, P ) is trivial if all the faces lie in the same hyperplane. Further, S(p, P )
is folded (or non-trivial) if some pair of faces lie in different hyperplanes, and is sharp if
each pair of faces sharing a vertex lie in distinct hyperplanes. A picture is called sharp if
it has a sharp lifting. Moreover, a picture which has no non-trivial lifting is called flat (or
trivial). A picture with a non-trivial lifting is called foldable.

Theorem 1 (Picture Theorem) [4],[5] A generic (d−1)-picture of an incidence struc-
ture S = (V, F ; I) with at least two faces has a sharp lifting, unique up to lifting equivalence,
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if and only if |I| = |V |+ d|F | − (d+ 1) and |I ′| ≤ |V ′|+ d|F ′| − (d+ 1) for all subsets I ′

of incidences with at least two faces.
The lifting matrix of a generic (d − 1)-picture S has independent rows if and only if

for all non-empty subsets I ′ of incidences, we have |I ′| ≤ |V ′|+ d|F ′| − d.

1.2 Symmetric incidence structures and pictures

An automorphism of an incidence structure S = (V, F ; I) is a pair α = (π, σ), where π
is a permutation of V and σ is a permutation of F such that (v, f) ∈ I if and only if
(π(v), σ(f)) ∈ I for all v ∈ V and f ∈ F . For simplicity, we will write α(v) for π(v) and
α(f) for σ(f).

The automorphisms of S form a group under composition, denoted Aut(S). An action
of a group Γ on S is a group homomorphism θ : Γ → Aut(S). The incidence structure S
is called Γ-symmetric (with respect to θ) if there is such an action.

Let Γ be an abstract group, and let S be a Γ-symmetric incidence structure (with
respect to θ). Further, suppose there exists a group representation τ : Γ→ O(Rd−1). Then
we say that a picture S(r) is Γ-symmetric (with respect to θ and τ) if

τ(γ)(ri) = rθ(γ)(i) for all i ∈ V and all γ ∈ Γ. (1)

In this case we also say that τ(Γ) = {τ(γ)| γ ∈ Γ} is a symmetry group of S(r).
A symmetric picture is called τ(Γ)-generic if the vertex positions are ”as generic as

possible”, that is, the only correspondence among the coordinates of the vertices is implied
by the symmetry group τ(Γ).

2 Liftings with incidental symmetry

Now we summarise results regarding the effect of symmetry on the lifting properties of
(d − 1)-pictures. It was proven in [1] that the number of vertices, faces and incidences
fixed by the elements of Γ play a key role in the foldability of symmetric pictures. For
every symmetry group of the plane a necessary condition for minimal flatness was given.

C2 Cs C3v

Figure 1: Some symmetric 2-pictures with
a (sharp) symmetry-induced lifting with
2-fold rotational, reflectional and dihedral
symmetry (where all interior regions are
faces). All of these structures are flat in a
generic non-symmetric position.

In the next two results C3 is the 3-fold rotational group and V3 and I3 denote the set
of vertices and incidences fixed by the 3-fold rotation, see [1] for a detailed definition.

Theorem 2 [2] A C3-symmetric incidence structure S = (V, F ; I) is C3-generically min-
imally flat if and only if |I| = |V | + 3|F | − 3, |I ′| ≤ |V ′| + 3|F ′| − 3 for every subset of
incidences |I ′| with at least one face and |I3(S)| = |V3(S)|.

Theorem 3 [2] Let S = (V, F, I) be a C3-symmetric incidence structure with |I ′| ≤ |V ′|+
3|F ′| − 4 for every substructure of S with at least two faces.
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1. If |V3(S)| = 0 then S is C3-generically sharp.

2. If |V3(S)| = |I3(S)| = 1 and |I ′| ≤ |V ′| + 3|F ′| − 6 holds for every C3-symmetric
substructure of S with at least two faces, then S is C3-generically sharp.

3 Liftings with forced symmetry

In this section we consider the case where the resulting d-scene is required to ”extend”
the symmetry into a higher dimension.

We first give an example of a symmetric (d − 1)-picture that is foldable, but none of
its folded liftings ”extends” the symmetry of the (d−1)-picture. Consider the 2-picture in
Figure 2. Using Theorem 1 it is easy to see that this 2-picture has a non-trivial lifting as
it does not have enough incidences to be flat since |I| = |V |+ 3|F | − 4 = 16. On the other
hand consider a lifting of the same 2-picture which admits a 4-fold rotational symmetry
around the z-axis. Such a symmetry forces the vertices belonging to the same vertex orbit
to lie in a plane orthogonal to the z-axis. But then the constraints corresponding to the
faces force every vertex to lie in the same plane, so the 3-scene must be flat.

Figure 2: A 2-picture with 4-fold rotational symmetry around the
origin that has a non-trivial lifting but has no non-trivial symmet-
ric lifting which admits 4-fold rotational symmetry around the z
axis. The 2-scene consists of 8 vertices which belong to two vertex
orbits and four faces (shown is gray colour) which belong to the
same face orbit.

3.1 Formal definitions

Let S(r) be a Γ-symmetric (d − 1)-picture with symmetry group τ(Gamma) and let
τ ′ : Γ→ O(Rd) be a representation of Γ so that:

1. the hyperplane of S(r) is invariant under τ ′(Γ);

2. the restriction of τ ′(Γ) to the hyperplane of S(r) is τ(Γ).

We say that S(r) is τ ′(Γ)-symmetry-forced flat if it has no non-trivial τ ′(Γ)-symmetric
liftings. Otherwise it is τ ′(Γ)-symmetry-forced foldable. If it has a τ ′(Γ)-symmetric sharp
lifting then it is τ ′(Γ)-symmetry-forced sharpe.

In order to state our results we also need to define a quotient incidence structure. We
choose a set of representatives OV = {v1, . . . , vn}, one for each vertex orbit. Similarly,
let OF = {f1, . . . , fm} and OI = {i1, . . . , ik} be the sets of representatives of F and I,
respectively. If il = (γ1vi, γ2fj) ∈ I where il ∈ Oi, vi ∈ OV , fj ∈ OF and γ1, γ2 ∈ Γ then
we assign γ−11 γ2 to il. We will use the notation ψ(il) = γ−11 γ2.

The gain bipartite graph (GS , ψ) of a Γ-symmetric incidence structure S is an edge-
labeled bipartite directed multigraph constructed as follows. The two vertex classes are
OV and OF and there is an edge with label γ between vi and fj for each possible group
element γ for which il = (vi, γfl). The edges are oriented towards OF .

The gain of a closed (not directed) walk e1, e2, e3, . . . , ek that starts at a vertex in
OV is ψ(e1)ψ(e2)

−1ψ(e3) . . . ψ(ek)
−1. (Note that every other edge is used in the reverse

direction; for these the inverse of their edge label is taken.) The gain group of a connected

Scene analysis with symmetry

85



edge set K and a vertex v spanned by K is defined by taking the set of gains of every
closed walk in K starting with v. (Further investigations show that the choice of v can be
arbitrary.) A connected edge set is balanced, if its gain group is the trivial group. Otherwise
it is unbalanced. A not connected edge set is balanced, if it does not have an unbalanced
component.

3.2 Necessary sparsity conditions for d = 2

Consider the special case when d = 2. Let S(r) be a reflection-symmetric 1-picture. There
are two choices for Γ′, namely C2 (half-turn) and Cs (reflection). For these two symmetry
groups we can give necessary conditions for the constraints to be independent.

Let (GS , ψ) be the gain-bipartite graph of the incidence structure S. In order to de-
termine independent constraints, every connected subgraph G′S = (V1, F1;E1) of GS has
to satisfy the following two properties (for both C2 and Cs):

1. for balanced sets |E1| ≤ |V1|+ 2|F1| − 2;

2. for unbalanced sets we have |E1| ≤ |V1| +
∑

fj∈F1
cj − 1 where cj = 1 if (vi, fj) ∈ I

and (γ(vi), fj) ∈ I for some i and γ 6= id and cj = 2 otherwise.

4 Further work

We expect that similar necessary conditions for forced symmetric liftings can also be
established for higher dimensions. To obtain combinatorial characterisations, it is natural
to consider inductive Henneberg-type construction moves. The results in [3] may also
provide useful tools. These investigations are left for a future paper.
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Abstract

We give a characterization of globally rigid graphs in Rd in terms of the natural
algebraic representation of the d-dimensional rigidity matroid.

1 Definitions and main result

We start by recalling some definitions. In the following, let K denote either R or C and
fix d ≥ 1. A framework in Kd is a pair (G, p) where G = (V,E) is a graph and p is a
map from the vertex set V to Kd. We also say that (G, p) is a realization of G in Kd. The
framework is generic if the set of its |V | · d coordinates is algebraically independent over
Q. Let n denote the number of vertices of G. For a pair of vertices u, v ∈ V , we define the
map muv : Cnd → C by

muv(p) =

d∑

i=1

(p(u)i − p(v)i)
2 ,

where we are regarding the elements of Cnd as maps from V to Cd. The d-dimensional
edge measurement map of G is the map md,G : Cnd → CE given by

md,G(p) = (muv(p))uv∈E .

We say that two frameworks (G, p) and (G, q) in Kd are equivalent if md,G(p) =
md,G(q), and they are congruent if muv(p) = muv(q) holds for all pairs of vertices u, v ∈ V .
A framework (G, p) in Kd is rigid if there is some ε > 0 such that every equivalent frame-
work (G, q) in Kd with ‖p− q‖ < ε is, in fact, congruent to (G, p). Here ‖·‖ denotes
the Euclidean norm on Kd. A framework (G, p) in Kd is globally rigid if every equivalent
framework in Kd is congruent to it.

The graph G is rigid in Kd (globally rigid in Kd, respectively) if it has a generic rigid
(globally rigid, resp.) realization in Kd. This is equivalent to requiring that every generic
realization in Kd is rigid (globally rigid, resp.); see [1, 7] in the case of rigidity and [3, 6, 8]
in the case of global rigidity. Furthermore, a graph is rigid in Rd (globally rigid in Rd,
respectively) if and only if it is rigid in Cd (globally rigid in Cd, resp.), see [7, 8].

In the following, we shall assume that the reader is familiar with the basic notions of
matroid theory. For a framework (G, p) in Cd, let R(G, p) denote the Jacobian of md,G

evaluated at p. Thus, R(G, p) is a matrix with rows indexed by E and columns indexed
by the nd coordinates of (G, p). The rows of this matrix define a linear matroid on E.
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It is folklore that this matroid is the same for every generic framework in Cd; this is the
d-dimensional generic rigidity matroid of G which we denote by Rd(G).

Let R denote the polynomial ring over C with indeterminates xiv, v ∈ V, i = 1, . . . , d
corresponding to the coordinate axes of Cnd. By a slight abuse of notation, we shall also
use muv to denote the polynomial

muv =
d∑

i=1

(
xiu − xiv

)2 ∈ R.

The following result seems to be folklore. It follows e.g. from the Jacobi criterion of
algebraic independence, see [4, Proposition 2.4].

Lemma 1 The polynomials muv, uv ∈ E give an algebraic representation of Rd(G) over
R. That is, a set I ⊆ E is independent in Rd(G) if and only if {muv : uv ∈ I} is
algebraically independent over R.

Let KV denote the complete graph on vertex set V . Our aim is to prove the follow-
ing natural characterization of global rigidity in terms of the algebraic representation of
Rd(KV ). Let Frac(R) denote the field of fractions of the polynomial ring R.

Theorem 2 A graph G = (V,E) is globally rigid in Rd if and only if the subfield of
Frac(R) generated by the polynomials muv, uv ∈ E contains muv for every pair u, v ∈ V .

Proof: This follows immediately from Theorem 5 below. �
The aim of the next section is to state and prove Theorem 5. In order to do this, we

shall need to recall some basic results from algebraic geometry. For a detailed exposition,
see e.g. [9]. See also [5] for more discussion on the measurement variety of graphs.

2 Global rigidity and algebraic geometry

For a set E, let C[E] (Q[E], respectively) denote the ring of polynomials over C (over Q,
resp.) with indeterminates xe, e ∈ E. An (affine) variety in CE is the set of simultaneous
vanishing points of some polynomials f1, . . . , fk ∈ C[E]. Affine varieties give the closed
sets of the Zariski topology on CE .

A variety is irreducible if it cannot be written as the proper union of two varieties.
A mapping ϕ : X → Y between varieties X ⊆ CE and Y ⊆ CE′

is a morphism if the
coordinate functions of ϕ are restrictions of polynomial functions CE → C to X. The
morphism is dominant if its image is Zariski-dense in Y . The field of rational functions
C(X) of an irreducible variety X ⊆ CE is the field of fractions of the quotient ring
C[E]/I(X), where I(X) is the set of polynomials vanishing on X. A dominant map ϕ :
X → Y between irreducible varieties induces an inclusion of fields ϕ∗ : C(Y )→ C(X) via
the (well-defined) mapping f 7→ f ◦ϕ. The degree of ϕ is the degree of the field extension
C(X) : ϕ∗(C(Y )). It is known that there is a Zariski-open subset of points y ∈ Y such
that the cardinality of the fiber ϕ−1(y) equals the degree of ϕ, see [9, Proposition 7.16]. If
the degree of ϕ is one, we say that it is a birational morphism.

Now we specialize to the case of rigidity theory. Fix d ≥ 1 and letG = (V,E) be a graph.
The d-dimensional measurement variety of G, denoted by Md,G, is the Zariski-closure of
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md,G(Cnd), i.e. the smallest variety in CE that contains md,G(Cnd). This is an irreducible
variety. Recall the definition of the polynomial ring R above. The morphism md,G induces
an inclusion of fields C(Md,G) → Frac(R); in particular, C(Md,G) is isomorphic to the
subfield of Frac(R) generated by the polynomials muv, uv ∈ E.

For convenience, we shall use the following notion. Let (G, p) be a framework in Cd

and u, v ∈ V a pair of vertices. We say that {u, v} is globally linked in (G, p) if for every
equivalent framework (G, q) in Cd, we have muv(p) = muv(q). The pair {u, v} is globally
linked in G in Cd if it is globally linked in every generic realization of G in Cd.

Finally, we shall need the following technical lemma, which can be proved by consid-
ering a basis of L as a K-vector space. See [2, Lemma A.2] for a similar statement.

Lemma 3 Let K ⊆ L be fields of characteristic zero and let f1, . . . , fk, g ∈ K[x1, . . . , xn]
be polynomials with coefficients in K, where x1, . . . , xn are independent transcendentals
over L. Suppose that g lies in the subfield L(f1, . . . , fk) of L(x1, . . . , xn). Then g ∈ K(f1, . . . , fk).

Theorem 4 Let d ≥ 1 and let G = (V,E) be a graph and u, v ∈ V a pair of vertices. The
following are equivalent.

a) There exists a generic framework (G, p) in Cd such that {u, v} is globally linked in
Cd.

b) The pair {u, v} is globally linked in G in Cd.

c) The projection π : Md,G+uv →Md,G is a birational morphism.

d) There exists a pair of polynomials f, g ∈ Q[E] where g ◦md,G is not the zero polyno-
mial and such that

muv =
f ◦md,G

g ◦md,G
,

that is, muv · (g ◦md,G) and f ◦md,G are equal as elements of the polynomial ring R.

Proof: (sketch) The equivalence of a) and b) follows from a standard genericity argument
using Chevalley’s theorem (see [8, Remark 2] for a similar argument). Assuming b), note
that since md,G is continuous, the image of generic points in Cnd under md,G forms a dense
subset of Md,G. Thus the assumption that {u, v} is globally linked implies that the fiber of
π has size one for a dense set in Md,G. It follows that π has degree one, so it is a birational
morphism.

For c) ⇒ d), recall that a birational morphism between two irreducible varieties in-
duces an isomorphism between the fields of rational functions of the varieties. In our case,
C(Md,G) is isomorphic to the subfield of Frac(R) generated by mu′v′ , u

′v′ ∈ E and π∗ is the
inclusion of this subfield into the subfield generated by mu′v′ , u

′v′ ∈ E and muv. The fact
that this inclusion is an isomorphism means that there is a pair of polynomials f, g ∈ C[E]
with complex coefficients that satisfy the conditions of d). Now applying Lemma 3 with
K = Q and L = C gives the desired result.

Finally, the d) ⇒ b) implication follows from the fact that, since g ◦md,G is a non-zero
polynomial with rational coefficients, g ◦ md,G(p) is non-zero for any generic realization
(G, p) in Cd. Thus, muv(p) is uniquely determined by md,G(p) for any generic realization
(G, p), as desired. �
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Theorem 5 Let d ≥ 1 and let G = (V,E) be a graph on n vertices. The following are
equivalent.

a) G is globally rigid in Rd.

b) G is globally rigid in Cd.

c) The projection π : Md,Kn →Md,G is a birational morphism.

d) For every pair of vertices u, v ∈ V there exists a pair of polynomials fuv, guv ∈ Q[E]
where guv ◦md,G is not the zero polynomial and such that

muv =
fuv ◦md,G

guv ◦md,G
.

Proof: The equivalence of a) and b) is [8, Theorem 1]. The rest of the equivalences follow
immediately from Theorem 4 by noting that G is globally rigid in Cd if and only if every
pair of vertices {u, v} is globally linked in G in Cd. �
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Abstract

Cruickshank, Kitson, and Power characterized the minimally rigid block and hole
graphs G in R3 with a single block. This result, and the corresponding algorithm, can
be used to verify rigidity only if G has exactly 3|V (G)| − 6 edges. In this note we
show that the constraint on the edge number can be omitted by providing an efficient
algorithm which can determine whether a block and hole graph with a single block is
rigid in R3.

1 Introduction

A well-known result of rigidity theory1, due to Gluck [4], states that every maximal planar
graph (or triangulation) is generically rigid in R3. Whiteley [8] initiated the study of
the rigidity properties of modified triangulations (called block and hole graphs) that may
contain blocks and holes. Extending the results of Finbow-Singh and Whiteley [3] on the
single block and single hole case, Cruickshank, Kitson, and Power [2] characterized the
minimally rigid block and hole graphs with a single block (and an arbitrary number of
holes).

To describe their result we need the following definitions. Consider a planar embedding
of a triangulation G = (V,E). Note that G is 3-connected and the embedding is essentially
unique. A cycle C of G divides the plane into two parts and hence it determines two
subgraphs of G that share the edges and vertices of C. Such a subgraph is called a disc.
We say that it is bounded by C, or that C is its boundary cycle. The interior of a disc
consists of the vertices and edges of the disc that do not belong to its boundary cycle.
Two discs are internally disjoint if their common edges or vertices, if they exist, are part
of their boundary cycles.

We say that a face graph Gf of G is obtained from (a planar embedding of) G by
choosing a collection of pairwise internally disjoint discs, removing the interiors of these
discs, and then labeling the non-triangular faces of the resulting (embedded) planar graph
by either b (block) or h (hole)2. We may restrict ourselves to discs bounded by cycles of
length at least four in G.

A block-and-hole graph G� with face graph Gf is obtained from Gf by adding new
vertices and edges that rigidify the vertex set of each block. This is achieved as follows.

1The reader is referred to [7] for an introduction to rigidity theory and further references.
2The definition of face graphs in [2, Definition 3] is slightly different. However, the authors (implicitely)

use the definition given here.
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Let C be the boundary cycle of a block-labeled face. We add two new vertices xC and yC
as well as edges that connect these new vertices to each vertex of C. Then the vertex set
V (C)∪ {xC , yC} induces a bipyramid, which is a minimally rigid graph (a triangulation).
We denote this subgraph by BC . The block and hole graph is the union of the face graph
and these bipyramids, one for each block-labeled face3. See Figure 1.

(a) G

block
hole

(b) Gf

(c) G�

Figure 1: A triangulation G, a face graph Gf defined by two cycles of length five and four,
respectively, and the block and hole graph G�. Graph G� is rigid, but not minimally rigid.

We say that a graph G = (V,E) is (3, 6)-sparse if iG(X) ≤ 3|X|−6 for all X ⊆ V with
|X| ≥ 3. Here iG(X) denotes the number of edges in the subgraph of G induced by the
vertex set X. If G is a (3, 6)-sparse graph with |E| = 3|V | − 6 then G is called (3, 6)-tight.
Note that in a simple graph no subset X ⊆ V with |X| ≤ 4 can violate the sparsity count.
Moreover, the subsets X ⊆ V with |X| = 2 satisfy the weaker bound i(X) ≤ 3|X| − 5.

It is known that minimally rigid graphs in R3 are (3, 6)-tight, but there exist non-rigid
(3, 6)-tight graphs. The main result of [2] shows that for a special family of block and hole
graphs these two notions coincide.

Theorem 1 [2, Theorem 36] Let G� be a block and hole graph with a single block. Then
G� is minimally rigid in R3 if and only if G� is (3, 6)-tight.

In the next section we extend this result to (not necessarily minimally) rigid block and
hole graphs.

3There are other ways to rigidify the block-labeled faces. Here we use this construction, which is called
the discus and hole graph in [2].
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2 Rigid block and hole graphs with a single block

We start with three simple observations. Recall that a graph G = (V,E) on at least three
vertices is 2-connected if G− v is connected for all v ∈ V .

Lemma 2 Every face graph K is 2-connected.

The statement of the lemma can be reversed in the following sense.

Lemma 3 Let K be a 2-connected planar graph and let J be a non-triangular face in
some planar embedding of K. Then there is a triangulation G for which K is a face graph
of G in which J is a face.

Lemma 4 Suppose that H = (V, F ) is a maximal (with respect to edge inclusion) (3, 6)-
sparse subgraph of a 2-connected graph G = (V,E). Then H is 2-connected.

2.1 The characterization and the algorithm

Cheng and Sitharam [1] proved that the size of any maximal (3, 6)-sparse subgraph of a
graph G provides an upper bound for the rank of G in the 3-dimensional rigidity matroid.
See also [5] for a different proof and extensions. Here we need the following corollary.

Theorem 5 [1] Suppose that G = (V,E) has a maximal (3, 6)-sparse subgraph with less
than 3|V | − 6 edges. Then G is not rigid in R3.

We are ready to prove (the algorithmic version of) our main result.

Theorem 6 Let G� be block and hole graph with a single block B� and let H = (V (G�), F )
be a maximal (3, 6)-sparse subgraph of G� with E(B�) ⊆ F . Then G� is rigid if and only
if H is (3, 6)-tight.

Proof: Since B� is minimally rigid, it is (3, 6)-sparse. Thus we can extend (the edge
set of) the block to a maximal (3, 6)-sparse subgraph. Therefore a maximal (3, 6)-sparse
subgraph H = (V (G�), F ) with E(B�) ⊆ F indeed exists.

Necessity follows from Theorem 5. To prove sufficiency we first use Lemmas 2 and 4
(and the fact that B� is 3-connected) to deduce that H is 2-connected. Let x and y be the
new vertices (i.e. the poles) of the bipyramid B�. It is easy to see that H − {x, y} is also
2-connected, and (as it is a subgraph of a face graph) has a planar embedding in which
the cycle defining the block B� is the boundary cycle of some face J .

It follows from Lemma 3 that H is a block and hole graph with a single block (where
the block labeled face in the corresponding face graph is J). We can now apply Theorem
1 to the (3, 6)-tight graph H to deduce that it is (minimally) rigid. Since H is a spanning
subgraph of G�, it follows that G� is also rigid, as required. QED.

We obtain the following characterization as a corollary.

Theorem 7 Let G� be a block and hole graph with a single block. Then G� is rigid if and
only if it has a minimally rigid spanning subgraph which is a block and hole graph with the
same block.

Rigid block and hole graphs with a single block

93



The results above imply that we can decide in polynomial time whether a block and
hole graph G� with a single block is rigid. It relies on a subroutine which can test whether
a given graph is (3, 6)-sparse. See e.g. [6] for the description of such a subroutine which is
based on matroidal methods and runs in polynomial time. With this subroutine in hand
we can construct a maximal (3, 6)-sparse subgraph H of G�, starting from B�, in a greedy
manner.

3 Concluding remarks

It is also possible - by using similar methods - to compute the degree of freedom (i.e. the
rank of G in the three-dimensional rigidity matroid) of a block and hole graph G with a
single block in polynomial time. The algorithm for this more general problem will be given
in the full version of this paper.
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The two main concepts of rigidity theory are rigidity, where the framework has no
continuous deformation, and global rigidity where the given distance set determines the
locations of the points up to isometry. It is NP-hard to decide the rigidity or the global
rigidity of a framework, however, in certain cases (for example, for generic frameworks
in the plane where the the coordinates of the points form an algebraically independent
set over Q), both the rigidity and the global rigidity of a framework depends only on
the underlying graph. We consider the following problem. Given a set of sensors in the
plane with known distances between some of them, at least how many sensor-locations do
we need to measure exactly to be able to reconstruct the exact location of each sensor?
This is the so-called global rigidity pinning (or anchoring) problem. To make this problem
tractable, we assume that the locations of the sensors form a generic set.

Pinning can be modeled as adding a complete graph on the set of anchored vertices
to the graph of known distances on the set of sensors as we can calculate the distances
between any two pinned sensors exactly by their measured locations. It is known that, in
the generic case in R2, these distances uniquely determine the locations of the sensors if and
only if the underlying graph is globally rigid (and there are at least 3 anchored sensors).
This implies that the problem is equivalent to the following. Given a graph G = (V,E),
find a minimum size set P ⊆ V such that G ∪KP is a globally rigid graph in the plane
where KP denotes the complete graph on the vertex set P . This problem was considered
previously, and a constant factor approximation was given [1]. In this extended abstract,
we give a min-max theorem yielding an optimal solution for a this problem provided that
the input graph G is rigid. In Part II [5] we show how an O(|V |2) algorithm can be given
to find this optimal vertex set. Moreover, we give a 2-approximation in case of non-rigid
graphs, which improves the previous results for this problem.

1 Preliminaries

Rigidity of generic frameworks in R2 can be characterized by some sparsity properties
of the underlying graph. A graph G = (V,E) is called sparse, if iG(X) ≤ 2|X| − 3 for
every X ⊆ V where |X| ≥ 2 and iG(X) denotes the number of edges of G induced by
the set X. A sparse graph is tight, if |E| = 2|V | − 3. Following the famous theorems of
Polaczek-Geiringer [8] and Laman [7] on the rigidity of generic frameworks in R2, a graph
is called rigid (in R2) if it contains a spanning tight subgraph.

The edge sets of the sparse subgraphs of a graph G = (V,E) correspond to the indepen-
dent sets of the so-called (2, 3)-sparsity matroid (or count matroid) of G (see for example
[2, Section 13.5]). The spanning tight subgraphs form a basis of this matroid. An edge
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set which forms a circuit in this matroid, is called an M-circuit. It is well-known, that an
equivalence relation can be defined on the ground set of an arbitrary matroid by using the
circuit axioms. Two elements e, f ∈ E of the (2, 3)-sparsity matroid are equivalent if there
exists an M-circuit C such that e, f ∈ C. The equivalence classes of this matroid are called
M-components of G. The graph G is called M-connected, if it has only one M-component.
The following theorem characterizes the globally rigid graphs in the plane.

Theorem 1 [3] A graph G = (V,E) with |V | ≥ 4 is globally rigid in R2 if and only if G
is 3-connected and M-connected.

For a rigid graph G = (V,E), letHG = (V, E) be a hypergraph, called the M-component
hypergraph of G, such that E consists of 2|V (C)|−3 parallel copies of the hyperedge formed
on V (C) for each M-component C of G. Note that if an M-component consists of just one
edge, HG contains the same edge. The definitions of sparse, tight and rigid graphs can be
generalized to hypergraphs, in particular to the M-component hypergraphs, in a natural
way.

Claim 2 If G is a rigid graph on at least 4 vertices its M-component hypergraph H is a
tight hypergraph.

A hypergraph (or a graph) H is called redundantly rigid, if for any hyperedge (or edge,
respectively) e of H, the hypergraph (or graph, respectively) H− e is rigid.

Theorem 3 Let G = (V,E) be a rigid graph on at least 4 vertices and HG = (V, E) be its
M-component hypergraph. For a pinning set P , suppose that G∪KP is 3-connected. Then
the following statements are equivalent:

a) G ∪KP is redundantly rigid

b) HG ∪KP is redundantly rigid

c) G ∪KP is M-connected

By this theorem we aim to pin downG to 3-connected andHG to redundantly rigid. The
advantage of this method is that we can use results on the redundant pinning structures
of tight hypergraphs.

These results use the concept of co-tight sets. A vertex set C is a co-tight set of the
hypergraph H = (V, E), if |V − C| ≥ 2 and V − C spans a tight hypergraph.

Theorem 4 [6] Let H = (V, E) be a tight hypergraph on at least 4 vertices. Then min{|P | :
G ∪ KP is redundantly rigid} = max{|C| : C is a family of disjoint co-tight sets of H}.
Moreover, P must intersect every co-tight set.

It is easy to see that we might always pin down inclusion-wise minimal co-tight sets,
that we denote with MCT sets for the sake of brevity. It is also known that the MCT sets
of a tight hypergraph are often disjoint.

Lemma 5 [6] Let H be a tight hypergraph on at least 4 vertices. If there are at least 3
MCT sets of H, then all the MCT sets are pairwise disjoint.
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We also need to pin down G to 3-connected thus we must consider its connectivity.
First, it is a well-known folklore result, that every rigid graph is 2-connected. On the other
hand, if there is a cut-pair {u, v} of G, then every component of G−{u, v} must be pinned
down. A set P is called a 3-fragment of a rigid graph G if NG(P ) (the neighbor set of P in
G) is a cut-pair in G and P induces a connected subgraph of G. Let us call the inclusion-
wise minimal 3-fragments 3-ends. The 3-ends of a rigid graph are pairwise disjoint [3]. It
is easy to see, that each 3-end must be pinned down and that pinning down one vertex
from each 3-end eliminates every cut-pair hence pinning down G to 3-connected.

2 The min-max theorem

As we saw, any pinning set must intersect all MCT sets and all 3-ends. Now we show how
can we pin down G to globally rigid optimally.

Theorem 6 Let G = (V,E) be a rigid graph on at least 4 vertices. Let HG = (V, E) be
the M-component hypergraph of G. Then min{|P | : G∪KP globally rigid } = max{|A| : A
is a family of disjoint MCT sets of HG and 3-ends of G}.

We sketch the main steps of the proof. First, if G is 3-connected, then Theorem 6
follows immediately by Theorem 4. Thus we may suppose that G is not 3-connected. Let
us construct a set system from all the MCT sets of HG and 3-ends of G. Let A contain the
inclusion-wise minimal sets of this system. The sets contained in A are called the atoms
of G.

Lemma 7 Let G be a rigid graph which is not 3-connected and let A be the family of
atoms of G. If A,B ∈ A then A and B are disjoint.

A set P is called a transversal of A if |P ∩ A| = 1 for each A ∈ A and |P | = |A|. By
Lemma 7 it is easy to find a transversal of the atoms of G as one arbitrary vertex from
each atom forms a transversal of A.

Lemma 8 Let G be a rigid graph which is not 3-connected and let A be the atoms of G.
If P is a transversal of A, then G ∪KP is a globally rigid graph.

We saw that one vertex in each atom must be pinned down and also that pinning down
a transversal of the atoms results a globally rigid graph thus showing the optimality of
pinning down a transversal of A.

3 Non-rigid graphs

Theorem 6 leaves open the natural question, what can we do if G is not rigid. When G
is not rigid, we can first pin G down to a rigid graph (which can be done optimally in
polynomial time [1, 4]) and next pin this (already rigid graph) down to a globally rigid
one.

If an optimal set that pins G down to a rigid graph is P1 and an optimal set that pins
G ∪KP1 down to a globally rigid graph is P2, while a minimal cardinality set pinning G
down to globally rigid is P , it is easy to see that |P1| ≤ |P | and |P2| ≤ |P | hold hence
P1 ∪ P2 results a 2-approximation for the optimal pinning set in case of non-rigid inputs.
This improves the previous result of 3-approximation [1].
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In this extended abstract we show how one can provide an efficient algorithm for the global
rigidity pinning problem. We show that, if the input graph G = (V,E) is rigid, then there
exists an algorithm with running time O(|V |2) which finds a minimum subset P ⊆ V for
which G ∪KP is globally rigid (that is, 3-connected and redundantly rigid by [5]), where
KP is the complete graph on P .

We shall use the notions and theorems from Part I of this sequence of papers [6]. As
described in [6], a minimum pinning set can usually be given by providing a transversal of
the family of the atoms of G which are the minimal elements of the union of the family of
the MCT sets of the M-component hypergraph HG of G and of the family of the 3-ends of
G. (The only exception is in the case where G is already 3-connected and we only need to
augment HG to redundantly rigid, however, in this case earlier methods from [7] can be
applied.) To give an O(|V |2) time algorithm, we first need to construct the M-component
hypergraph HG in this running time. The 3-ends of G can be found by the linear time
3-connectivity augmentation algorithm of Hsu [4]. This algorithm has O(|V |+|E|) running
time. Finally, by slightly modifying an algorithm by Garćıa and Tejel [2], we can output
an optimum pinning set.

1 The algorithmic construction of the M-component hyper-
graph

Let us first briefly summarize the algorithm for testing rigidity and its main properties (see
[1, 8] for more details). This algorithm is based on the Orientation Lemma of Hakimi [3] and
uses in-degree constrained orientations. To check the rigidity of G, the algorithm constructs
a tight subgraph of G by considering its edges one by one. During the construction we
have a sparse subgraph G′ of G and we also maintain an orientation ~G′ of G′ in which the
in-degree of each vertex is at most two. Before adding an edge ij to G′, we try to find a
reorientation of G′ in which the in-degree of i and j is zero (while all the other in-degrees
are at most two). Such reorientation (if exists) can be found in O(|V |) time by running
constant number of backward DFS on ~G′ from i and j (and switching the orientation of
paths ending at i or j). If we find a proper reorientation, then, by the Orientation Lemma
[3], each set X containing both i and j induces at most 2|X| − 4 edges in G′ and hence
adding the edge ij to G′ maintains its sparsity. Otherwise, the edge ij can be omitted,
moreover, (during the backward DFS) we find a minimum set containing both i and j
with in-degree zero in ~G′. This is the minimum set X which contains i and j and induces
2|X|−3 edges in G′, that is, the vertex set of the minimum tight subgraph of G′ containing
both i and j.
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Lee and Streinu [8] (by using a data structure discovered in their joint paper with
Theran [9]) reduced the total running time of this algorithm from O(|V ||E|) to O(|V |2).
The main idea is to maintain the family of rigid components of G′ which structure can
be used to omit edges, which are not needed to construct a tight subgraph, in constant
time. It is easy to update the structure of rigid components in O(|V |) time when we add
an edge. Beside this update, we need a data structure which helps to decide in constant
time whether two vertices are in the same component. To get an easily updatable data
structure which fulfills this goal [9], we consider the edges in a breath-first manner, that
is, in such a way that we take all the edges incident with the same vertex v ∈ V in a row,
and, as long as we consider these edges, we maintain a 0-1 vector of length |V |−1 which is
one at a coordinate corresponding to a vertex w ∈ V −v if and only if v and w are induced
by a tight subgraph (that is, a rigid component) of G′. When we add a new edge to G′

or start to consider the edges incident with another vertex, this vector can be updated in
O(|V |) time. This along with the constant time omission of unusable edges implies a total
running time of O(|V |2) for the rigidity testing algorithm.

The above algorithm also works for testing the sparsity and tightness of a hypergraph
[10], however, its running time is slightly worse in the general case since the size of the
hyperedges affect the running time of the backward DFS subroutines. Fortunately, the
M-component hypergraph has 2|e| − 3 parallel copies of each hyperedge e which implies
that the running time in this special case will not be increased.

We shall use the above idea for the construction of the M-component hypergraph in
O(|V |2) time with the following differences. First, instead of maintaining G′, ~G′, the rigid
components of G, and the above mentioned 0-1 vector, we maintain the M-component
hypergraph HG′ of the already considered edges, its orientation ~HG′ in which the in-
degree of each vertex is at most two (and each hyperedge has one head and multiple tails),
and a 0-1 vector c of length |V | − 1 which tells us whether the currently considered vertex
is contained in the same M-component with other vertices (that is, this vector is one at
the HG′-neighbors of the currently considered vertex).

As before, we consider the edges one by one in a breath first manner. When we consider
an edge ij, we first check in our vector whether i and j are contained in the same M-
component. If yes, then the edge ij is useless (that is, it cannot be used to construct larger
M-components) and hence we can omit it which only need constant time in this case.
Otherwise, we try to find a reorientation of ~HG′ in which the in-degree of i and j are zero
and all the other in-degrees are at most two by performing constant number of backward
DFSs form i and j (and switching the orientation of paths ending at i or j). Each of these
DFSs needs O(|V |) running time since the edge number in the sparse hypergraph HG′ is
O(|V |) and furthermore we only need to consider one of the 2|e| − 3 parallel copies of the
same hyperedge e during the search. If we can find a proper reorientation, then we add ij
to HG′ , orient it arbitrarily, and modify the vector c correspondingly. Note that we add
2|V | − 3 = O(|V |) edges this way to HG′ during the algorithm (which edges form a tight
subgraph of G). If we cannot find a proper reorientation, we find a minimum set X which
has in-degree zero in ~HG′ and contains both of i and j, that is, the minimum set X which
contains both of i and j and induces 2|X| − 3 hyperedges in HG′ . Then we update HG′ by
deleting all hyperedges induced by X and adding 2|X|−3 copies of X to its hyperedge set.
The heads of these hyperedges in ~HG′ will be exactly the heads of the omitted hyperedges.
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This update along with the update of the vector c needs O(|V |) running time (see also
[9]). Note that during such a step we merge at least two M-components and hence we have
at most 2|V | − 3 = O(|V |) steps of this type. This implies that the total running time of
the algorithm is O(|V |2). The following statement shows that this way we indeed get the
M-component hypergraph.

Lemma 1 Let G′ be a graph and let HG′ = (V, E) be its M-component hypergraph. Let
ij be an edge which is not induced by the vertex set of any M-component of G′. Assume
that i and j are induced by a tight subhypergraph of HG′ and let X be the vertex set of the
minimum tight such subhypergraph of HG′. Then the M-component hypergraph of G′ + ij
arises from HG′ by deleting its subhypergraph HG′ [X] induced by X and adding 2|X| − 3
copies of the hyperedge X.

Proof: (Sketch.) Let G′′ be a maximal sparse spanning subgraph of G′. It is easy to see
that X induces a tight subgraph in G′′ containing i and j. Hence the vertex set Y of the
minimum such subgraph is a subset of X, and thus G′ + ij will not contain any M-circuit
which is not a subgraph of G′[X]. On the other hand, we claim that X contains at least
two vertices from the vertex set of each M-components of G′. To see this, observe that the
vertex set of each M-component of G′ which intersects Y by at least two vertices can be
added to Y by maintaining the tightness of the induced subgraph. Moreover, the vertex
set, which we get with this method, induces a tight subhypergraph of HG′ containing both
i and j, hence it must be equal to X. This implies that each M-component of G′, which
is induced by a subset of X, has at least one edge contained in an M-circuit of G′ + ij
containing ij and hence the union of these M-components of G′ (along with the edge ij)
form an M-component in G′ + ij. 2

2 The construction of a minimum pinning set

To construct a minimum set for which G∪KP is globally rigid, we shall use the main idea
of an algorithm by Garćıa and Tejel [2]. This algorithm takes a minimum degree vertex
i of a tight graph G and runs a subroutine called Find a minimum covering rooted at i
with this vertex. This greedy subroutine sequentially calculates, for each unmarked vertex
v, the vertex set Tiv of the minimum tight subgraph of G containing i and v, marks the
elements of Tiv and modifies its output V ′ to (V ′−X)+v. [7, Lemma 5.10] and the results
of [2] imply that V ′ or V ′ + i is a transversal of the MCT sets of G. This can proved by
using the fact that Tiu ∩ Tiv induce at least one edge of G for each u, v ∈ V ′ due to the
minimum degree of i. To decide which one of these two possibilities is our case, we only
need to run again Find a minimum covering rooted at v for a vertex v ∈ V .

Now we modify the above algorithm, as follows. We first take a tight spanning subgraph
of G and search for a minimum degree vertex i in this graph. We shall run Find a minimum
covering rooted at i in the tight hypergraph HG, and then, for a vertex v from the output,
Find a minimum covering rooted at v again in HG. Note that either i has degree at most
three in HG or it is incident with the parallel copies of one hyperedge and with at most
one normal edge in HG. This implies that the previous proof method can be used to prove
that the output V ′ of the second run of Find a minimum covering is a transversal of
the MCT sets. Moreover, it follows from the proof that we put the first vertex which we
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explore from an MCT set into V ′, hence if we explore first the (unmarked) vertices from
the 3-ends of G, then each MCT set which intersects a 3-end will be represented by a
vertex from a 3-end. Hence to get a transversal of the atoms we only need to add a vertex
to V ′ from each 3-end which is not intersected by V ′. As we have seen earlier, the vertex
set of a minimum tight subhypergraph of HG containing i and v can be calculated in
O(|V |) time (by using the 2-in-degree constrained orientation of HG). This implies that
the total running time of our algorithm is O(|V |2).
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Abstract The document-centric perception of Information Systems became ubiqui-
tous recently. Not only the output, input, and internally stored data collections appear
as documents but the representation of Business Processes and the artifacts of Enterprise
Architecture. For this reason, the document-centric approaches for understanding the be-
havior of Information systems are an apt tool. Information Systems can be considered
from three viewpoints. Namely data, processes, and behavior that represents the complex
interaction of business processes through the data. The representation of this complex
set of relationships requires approaches grounded in various branches of Mathematics and
Computer Science, namely Information Theory, Computational Graph Theory, and Com-
putational Algebraic Topology. In this paper, the essential ideas, proposed methods, and
approaches are outlined to open a way for further researches.

1 Introduction

The Architecture of Information Systems covers several aspects, perspectives, viewpoints
that expound the relevant features of an operating or being under design Information
System. Emerging standards in past decades like XML [5, 9] made it possible that vari-
ous constituents of Information Systems can be described and represented by document
formats. The interchange format of data collections is XML, JSON that can represent
traditional Relational Databases but XML, JSON is the lingua franca for the most re-
cent heterogeneous structure of various databases [8, 6, 10, 4, 16].Thus, the input, output,
content and Business Processes can be described by various documents having standard
specification languages.[7, 14].
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Figure 1: Information Systems’ model in a document-centric and Information Theoretic
viewpoint based on [13]

The various facets of Information Systems can be described by documents that can
be represented by graph structures. The complex relationships within a facet and mutual
interactions among them can be represented by hypergraphs. Since, the hypergraphs are
able to depict multi-dimensional relationships among multi-sets. The hypergraph descrip-
tion of the models of Information Systems that can be placed into Enterprise Architecture
frameworks as Zachman or Togaf [15, 17] can be analyzed with the help of mathematical
tool sets.

2 Discussion, analysis

To exploit the mathematical toolbox, the first task is to represent models of the funda-
mental aspects of information systems. The first task was to find a formal approach to
describing documents in a comprehensive way that embraces the generic documents and
their step-by-step refinements till the finalized ones [13]. The hypergraph can be trans-
formed into a bipartite graph that can be represented in graph databases that are acces-
sible [8, 6, 10](see Figure 2).The second task was to customize the searching algorithm
available for graphs for our purpose to find an effective and efficient set of algorithms that
can be used to locate patterns and phenomena and lay the foundation for visualization .
The tailoring and systemic investigation of the algorithms happened in an experimental
design and development. Both the performance and complexity analysis were carried out
along with the operationalization of algorithms in a graph database[12].
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Figure 2: The transformation of a hypergraph that represents the relationships among data

Thus, the customized algorithm can be exploited to analyze the represented model.
One of the models is the document model that can include the stored data and their
representation by schemata for data collections. The other model is the model of Business
Processes that describes the behavior of the Information System. The document- and data-
centric models represented by hypergraphs are interconnected to the behavior model, to
the representation of Business processes through complex relationships.
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Figure 3: Interactions between a Business Process and the document structure

The major aim is to check the integrity, consistency, and certain security properties
of the system [2] (see 3). The transformation of hypergraphs into bipartite graphs can be
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applied for the representation of Business Processes. The graph representation including
the hypergraphs offers the opportunity to utilize linear algebra and algebraic topology
methods for the analysis of the underlying structure. One of the possibilities is to calculate
the Smith Normal Form for single graphs and investigate the similarities and dissimilarities
of the individual graphs.An experimental design and software experiment was carried out
that used Smith Normal Form and clustering of represented Business Processes to discover
significant problems in changes of Business Process in a dynamic environment [1]. Besides
Smith Normal Form as a linear algebraic approach, the hypergraphs can be mapped onto
simplicial complexes that yield the opportunity to use the mathematical toolset of alge-
braic topology. The feature of simplicial complexes, which represent hypergraphs, can be
examined by the structures of homology groups and their invariants, e.g. Betti numbers
[3]. The homology groups make it possible to identify holes within simplicial complexes,
e.g. a 2-dimension hole within a simplicial complex has a 1-dimension boundary that is a
loop, a 3-dimension hole is the void within a torus that has a boundary defines by a 2-
dimension surface, thereby the "loops" of hypergraphs can be explored as well. To exploit
the mathematical structures of a model representing hypergraphs, appropriate coding is
required, i.e. the hypergraphs of models in both structure and explanatory abilities should
be integrated to give understandable results. Besides the structural analysis, we can apply
logic in the form of Description Logic and Horn function to carry out reasoning on the
hypergraphs structures, an application of Description Logic is showcases in Reference [11].

3 Conclusion and Future Work

The Information Systems embody an interdisciplinary field between Computer Science,
Informatics, and Management Sciences. Application of formal methods of Mathematics
and Computer Science proffer the opportunity that the changes that are enforced by the
environment of Information Systems can be kept in hand. The complexity of the situation
can be handled by a Virtual Twin solution when a well-defined part of the Information Sys-
tem is replicated in a virtual environment that allows for the experimenting and studying
the various phenomena of a productive Information System. The results that are achieved
up to now seem promising, namely, the operationalization of searching algorithm on hy-
pergraphs, the utilization of Smith Normal Form with the combination of Data Science
algorithms. The theoretical foundation is the formalized description of Information Sys-
tems in hypergraphs is progressed to laying the groundwork for the description of various
facets of Information Systems as documents, data, and Business Processes.

In future work, the research would aim at the exploitation of homology groups and
Horn function to explore the different phenomena of the specific models in Information
Systems. The model checking of Information Systems can use the progress of Computa-
tional Topology and the development of the relevant algorithms that can be accessed in
open-source format. The formally defined single models of Information Systems can be
embedded into a Virtual Twin environment where the models that are specified by hyper-
graphs then the graph representations are transformed into other mathematical structure
where the mathematical methods and their operationalized algorithms can be employed
for model checking and discovering anomalies, patterns, and phenomena.
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Abstract Education arrived to a new step, where modularity is playing an important role
in lifelong learning. Young professionals continuously want to pick up new skills but not
necessary going through a full university program. Micro-credentials offer a great solution
to prove certain obtained skills. The role of higher education institutes is changing with
these novel certification methods. Academic recognition is crucial to ensure acceptance
and uptake of micro-credentials within higher education. In order to issue a diploma to
the learners, they have to show they fulfill the rules of the institute, which can be checked
using process mining techniques. Conformance checking runs process models against pre-
set rules to check if that model complies with them or not. These techniques with the
proper process modelling tools can provide the option to higher education institutes to
automatically issue certificates even diplomas if the learner obtained the necessary micro-
credentials to get them.

1 Introduction

Process mining is not an unknown domain in the education field, several research used it
to enhance the quality of courses (mostly on MOOCs, due to the easy access to learning
process data). An example is [2], where the authors show the advantages of process mining
with process cubes on educational data.

This research identifies the best process modelling techniques for the purpose. Not only
the micro-credential granting process can be enhanced with process mining but the evalu-
ation of the learning process as well. However, a fair evaluation can only be carried out if
transparent information is available on elements [1] such as the process, quality, workload,
level and learning outcomes of the credential. In this research the focus lays on the learning
process modelling. The conventional process modelling techniques are not suitable enough
for making it transparent and optimal for conformance checking algorithms. These conven-
tional modelling techniques (such as BPMN, Petri nets, Workflow nets, UML, etc...) on
dynamic processes like the learning path of a MOOC results in a so called spaghetti model,
which is hard to interpret and also graph algorithms perform poorly on them. Lastly the
focus lays on a hypergraph based modeling technique (Flexible Process graph [6]), which
offers a suitable solution to the micro-credential modeling task with few modifications.

2 Discussion, analysis

For the comparison of different modelling techniques a tailored taxonomy [3], which is
based on the Zachman or Togaf [5, 8] frameworks, was used.
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For ad-hoc process modeling purposes [6] created a hypergraph based solution called
the Flexible process graph and its definition is the following:

Definition 1 The Flexible process graph is a triplet (A,E, T ) where:

A is a finite set of activity nodes

E is a finite set of edges e, where : e = ⟨I(e), O(e)⟩ ∈ E,A ∩ E = ∅
I : E → P (A) is a function defining edge input activities

O : E → P (A)\∅ is a function defining edge output activities

∀e ∈ E : I(e) ∩O(e) = ∅
T is an edge type function T : E → {AND,OR,XOR}

Figure 1: Visualisation of a flexible process graph based on [6]

The visualisation of a flexible process graph can be seen above on Figure 1, where
{e1, e2, e3, e4} ∈ E are the edges and {v1, v2, v3, v4, v5, v6, v7, v8} ∈ V are the activity
nodes. The following visualisation is an end result of the applied flexible process graph
modeling on a Data science MOOC syllabus. Figure 2 shows how easily can this solution
represent different learning paths.
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Figure 2: Flexible process graph of "Machine learning basics" MOOC syllabus

3 Conclusion and Future work

Based on the conducted research the most fitting solution for modelling micro-credentials’
learning process, which can be an ad-hoc considering the order of activities that the learners
can take, is the Flexible Process Graph [6] or one of its variants. The conventional tech-
niques lead to a more difficult to interpret model on which the graph algorithms struggle
in an ad-hoc setting.

The flexible process graphs don’t have the unified framework for graph algorithms as
it is the case in the directed graphs. This leads to our future research, where the trans-
formation of graph algorithms to flexible process graph algorithms will be developed and
evaluated.

Next to the graph algorithms, this research raised an other question, which is interesting
to research following these results. It is aiming to push the transparency of the learning
process modeling and holding their credentials. With the conformance checking algorithms
an automatic micro-credential or diploma issuing solution can be built. After building
this solution a research will be conducted on how to create an interface with the current
blockchain based micro-credential storing architectures like [4, 7] and the algorithm that
issues them.
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Abstract Nowadays, the Unified Modeling Language (UML), standardized by the Object
Management Group (OMG) has been widely accepted by the industry and has established
itself as the common language for analysis and design in software engineering.

The most known weakness of UML is that it can’t be verified directly, a transformation
to another more formal language is needed to facilitate the verification process. Model to
Program transformation (M2P) is an important step to process and validate UML diagrams
that are designed in software modelling environments, and it bridges between languages
on a different level of abstraction and formality.

The research outlines an approach of transformation from UML diagrams to a for-
mal workflow language YAWL (Yet Another Workflow Language). This transformation
simplifies the semantics of UML diagrams via a mapping to YAWL, by defining a set of
transformation rules, which in turn makes the verification and analysis of UML models
easier and provides a chance to operationalize the model.

1 Introduction

Model transformation is a mechanism for deriving from one model (source model) to an-
other (destination model) while maintaining some kind of equivalence between them by
defining and executing a set of rules known as model transformation language. There are
many, various types of model transformations and applications, each with its own set of
inputs and outputs, as well as the manner they are stated.

The Unified Modeling Language (UML) is one of the most transformed languages which
is defined as a meta-model with several packages. Each package introduces concepts ex-
pressed through graphical notation and diagrams. In this paper, we will present a novel
transformation from UML activity diagrams models, that can fairly capture protocol de-
signs, to YAWL-Net in both behavioral and functional notions by constructing a set of
transformation algorithms and mapping rules. the weakness of UML is that it cannot be
verified directly, a transformation to another more formal language is needed to facilitate
the verification.

YAWL is semantically based on the Petri net. YAWL have a mature verification tools
that find structural errors (WofYAWL [1], Woflan [2], ProM [3]). First, we transform certain
components of the UML-AD model respecting the element-to-element rules. Second, UML-
AD control flows are converted to yawl split or join gates. Third, get rid of any redundant
tasks that aren’t adding any value to the process.
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In section 2 we present some literature review about process modeling, workflow lan-
guage, and unified modelling language. YAWL and AD-UML meta-modeling, in section
3 we provide foundations and preliminaries about model transformation, methods and
materials used in transformation. Section 4 illustrates the transformation context, the
transformation of basic structures, connectors, model reduction, and branch conditions
and the algorithm of transformation that could be modeled semantically without the need
for programming. After that, a conclusion and future works.

2 Literature Review

2.1 Business Process Modelling

In a variety of fields, business process modeling is used to characterize and state customized
process and information system development.Many factors and information are extracted
from business process like cost and time, in addition to execution improvement and fault
management.

2.1.1 Business Model Life Cycle

There are several stages in the life cycle of a business process.In the Analysis phase, elic-
itation meetings with stockholders are held to develop the AS-IS process model, which
includes assessments of the changes and their costs, as well as improvement deficiencies.
Design phase is the second phase where the findings of the analysis phase is considered,
and TO-BE model is prepared.This model is in charge of the improvement plan as well as
new features and modifications in processes such as inputs, outputs, rules, and actions in
order to accomplish desired outcomes (efficiency and effectiveness). Validation (simulation)
of business processes can be done after the Design phase but before the Implementation
phase. During the implementation phase, various organizational and technical details of
the enterprise are realized, such as deployment, organizational structure, and resource allo-
cation, and the requirements are mapped into IT services. In the execution phase, business
operations are executed to meet client needs, and the execution data is saved in the form
of log files or tables using an information system. The result of the business process execu-
tion is used to assess the business process and its components. Evaluation phase is the last
phase where different quantitative measures are taken, and actual values are compared to
target values in order to assess the performance of business objects and costs, and these
data are utilized for qualitative indicators such as customer satisfaction and overall quality.

2.2 Formal Workflow Language

It’s a workflow language based on workflow patterns, with a software system that includes
an execution engine, a graphical editor, and a worklist handler.

2.2.1 YAWL

This language was built on Petri nets, a well-known theory of concurrent processes with
a graphical representation, on the one hand, and Workflow Patterns, on the other. The
existence of Workflow Patterns are a widely accepted criterion for a process definition
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Figure 1: Business model life cycle diagram

language’s applicability. Petri nets can capture many of the described control-flow patterns,
but not the many instance patterns, cancellation patterns, or generalized OR-join. YAWL
therefore extends Petri nets with dedicated constructs to deal with these patterns.

2.2.2 YAWL Main Features

YAWL offers the following distinctive features:

• For control-flow patterns, YAWL provides extensive support. It is the most powerful
language for encapsulating control-flow dependencies in a process design.

• YAWL captures the data perspective through the use of XML Schema, XPath, and
XQuery.

• YAWL provides complete resource pattern support. It is the most powerful language
for encapsulating resourcing requirements in a process definition.

• YAWL is built on a solid formal foundation. As a result, its specifications are clear
and automated verification is possible (YAWL offers two distinct approaches to ver-
ification, one based on Reset nets, the other based on transition invariants through
the WofYAWL editor plug-in).

• YAWL’s Worklets methodology provides unique support for dynamic workflow. As a
result, workflows can change over time to meet new and changing needs.

• YAWL is designed to be simple to set up. It comes with a variety of automatic
installers as well as a user-friendly graphical design environment.

2.3 Unified Modelling Language

The primary goal of UML is to establish a standard for visualizing the design of a system.
UML diagrams are used to depict a system’s behavior and structure. UML is a model-
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Figure 2: YAWL language main notations

ing, design, and analysis tool that helps software engineers, businesspeople, and system
architects.

2.3.1 What is Activity Diagram

The inputs, outputs, sequences, and circumstances for coordinating other behaviors are all
highlighted in an activity diagram. Semantics are included in activity diagrams to precisely
specify system behavior in terms of control flow, inputs, and outputs. A controlled series
of actions that changes inputs into outputs is represented by an activity diagram.

2.3.2 Activity Diagram Meta Modeling Overview

An Activity is a graph with three kinds of ActivityNodes: ObjectNode, ControlNode and
ExecutableNode. An ObjectNode represents the data in a process, a ControlNode coordi-
nates the execution flow and an ExecutableNode represents a node that can be executed,
i.e. process action. There are two kinds of ActivityEdge to link the nodes: ObjectFlow and
ControlFlow. ObjectFlow edges connect ObjectNodes and can have data passing along it.
ControlFlow edges constrains the desired order of execution of the ActivityNodes. Con-
trolNode can be used for parallel routing (ForkJoin), conditional routing (DecisionNode),
synchronization (JoinNode) and merging multiple alternate flows (MergeNode). InitialN-
ode and AcitivityFinalNode represent respectively the beginning and the end of an Activity
while FlowFinalNode terminates flow. InputPin and OutputPin are anchored to Actions to
represent the required input data and the output data produced by the action. Similarly,
an Activity can have multiple ActivityParameterNode to represent its data input and out-
put. Thus, an Activity can represent a process by defining a coordinated sequencing set of
actions using both control-flow and data-flow.

Meriem Kherbouche, Ahmad Mukashaty, Bálint Molnár

118



Figure 3: YAWL language main symbols

3 Methods and Materials

3.1 Model Transformation

It is a mechanism for deriving from one model (source model) to another (destination
model) while maintaining some sort of equivalence relationship between them by creating
and executing a set of rules known as model transformation language.

3.1.1 Types of model transformation

• Model To Text Transformation (M2T): is a type of model transformation in which
the result of model transformation is source code or configuration text.

• Text To Model Transformation (T2M): it is a reverse engineering process where the
text is transformed into information defines behavioral concepts.

• Text To Text Transformation (T2T): it is an approach used for language processing
in order to encode a text and transform it into another different text.

• Model To Model Transformation (M2M): is a model-driven process which enables
to specify the source and destination models and set of mapping declarations that
define the relationships between the elements in the model.

3.2 Methods & Materials

3.2.1 Papyrus

It is UML graphical editing tool which can be used as an Eclipse plugin which provides
support for domain specific languages and SysML.

3.2.2 Acceleo

It is a model to text (M2T) transformation tool which can be used to express transforma-
tions and generate a corresponding generated code.

An Operationalized Transformation for Activity Diagram into YAWL

119



Figure 4: UML-AD to YAWL-NET Transformation Context

3.2.3 JDOM

It is an open-source Java-based document object model for XML that was designed specif-
ically for the Java platform in that it can take advantage of its language features. It uses
external parsers to build documents.

4 Research Scope

4.1 Transformation Context

In order to achieve model-to-model transformation, which is the transformation from UML-
AD to YAWL-NET, the transformation process should pass through different stages of
transformation and each stage has a set of interactions to implement. The source is an
activity diagram built on Papyrus UML, which provides services to export the abstract
syntax of an activity diagram and its corresponding XML format. The output is an XML
(.yawl) file that can be parsed and run and interpret by YAWL Application.

4.2 UML-AD Metamodel to SW-Model transformation

Metamodel to software model transformation is a refactoring method which generates
integrated classes in order to communicate with the transformation engine module. Model
to Text languages is performed using Acceleo Tool, it mainly reads UML-AD XML file,
generated by Papyrus, and auto generate one Enum (Node Type), three classes (Edge,
Node, Activity), and two functions (Node Constructor & Activity Constructor).
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4.3 Transformation Rules from UML-AD to YAWL-NET

Transformation engine is the heart of the transformation chain, in this stage, transforma-
tion behavioral and rules are defined, and suitable transformation algorithm is performed.

4.3.1 Transformation of basic structure

An element-to-element mapping rules are implemented on some of UML-AD elements
which has a corresponding element in YAWL-NET, and both of them have the same be-
havior and functionality on the net.

• Initial Node in UML-AD matches Input Condition in YAWL-NET.

• Activity Final Node is UML-AD matches Output Condition in YAWL-NET.

• Opaque Action in UML-AD matches Task in YAWL-NET.

4.3.2 Transformation of connectors

Defining mapping rules from control flows in UML-AD (fork, decision, merge, and join)
to YAWL NET gates (XOR, AND) which is assigned to YAWL atomic task. In YAWL
connectors are part of tasks, in order to map a connector, an empty task (virtual task) is
defined to represent a single connector.

• Decision node is transformed to XOR-Split task.

• Merge node is transformed to XOR-Join task.

• Fork node is transformed to AND-Split task.

• Join node is transformed to AND-Join task.

4.3.3 Model Reduction

In order to avoid any redundant empty tasks in the output YAWL nets after transforming
the activity control flows, reduction methods are implemented on some empty tasks which
is considered as duplicated ones.

4.3.4 Define Branch Conditions

When it comes to decision symbol transformation, the main concept that the decision
depends on dimensions in order to choose one of multi branches. In order to preserve that
concept, we defined a condition as an input of each branch, which is expected to be a
Boolean function that allow the token to pass in case of true.

5 Conclusion

In this research, we presented a novel transformation from UML-AD to YAWL-Net by
implementing a set of transformation algorithms. First, it applies an element to element
mapping rules for the basic structure. Second, transforming UML-AD control flows to yawl
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split or join gates. Third, remove any redundant task that doesn’t have any additional
functionality to the process.

In future research, UML-AD model must be analyzed with YAWL verification tools
such as (Woflan, WofYawl) to check whether it contains structural errors like deadlock or
lack of synchronization.
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Abstract. With the continuous improvement of global economic integration, the pace
of global urbanization and modernization has been accelerated. And with the agricultural
and industrial revolutions, the urban population began to expand at an unprecedented rate.
Today, 55% of the world’s population lives in urban areas, a proportion that is expected
to increase to 68% by 2050, additional 2.5 billion city dwellers worldwide. Along with
the physical expansion of cities, there are many problems, such as water management
problems, social order problems, traffic problems. Among them like the blood of the city
traffic, more and more become an obstacle to urban development. Solving the problem
of urban traffic congestion and optimize the efficiency of urban traffic is an essential link
in building a smart city. Intelligent transportation is an important part of a smart city.
How to scientifically design and build intelligent transportation is a very valuable problem.
Reinforcement learning, as an important part of the Computer Science, has been widely
used in various social fields such as Health, transportation, education, finance, and so on.
This paper will discuss the application of intelligent transportation control systems through
the investigation and research of intelligent transportation combined with reinforcement
learning.

Keywords. Intelligent transportation system (ITS), smart city, reinforcement learn-
ing, deep learning, deep reinforcement learning, internet of things, IoT smart service, 5G
communications, control systems.

1 Introduction to ITS

Along with the physical expansion of cities, there are many problems, such as water man-
agement problems, social order problems, traffic problems. Among them, the blood of the
city traffic becomes more and more an obstacle to urban development. The emergence of
intelligent transportation can optimize traffic to some extent and improve urban traffic
problems.

Intelligent Transportation Systems (ITS) apply various technologies to monitor, evalu-
ate, and manage transportation systems to enhance efficiency and safety [1]. Science fiction
transportation aside for the moment, this definition can be reduced to the following con-
cepts that make up intelligent transportation: management, efficiency, and safety. In other
words, it uses emerging technologies to make urban mobility more convenient, cheaper,
and safer for governments and individuals.
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Emerging technologies are taking these ideas from possible to common. Mainly due to
the proliferation of IoT devices and 5G communication technology. The former provides in-
expensive sensors and controllers that can be embedded into virtually any physical machine
for remote control and management. The latter gives high-speed communications needed
for real-time management and control of transportation systems with minimal latency [2].

2 ITS control systems with reinforcement learning

In urban intelligent transportation, pedestrians and vehicles (especially cars) are the main
moving objects. However, it is often cars rather than people that move long distances in
cities, so here we take cars as the main research object in urban intelligent transportation
or study the ITS control system with cars as the boundary.

On this basis, we can consider the practical application of reinforcement learning from
the outside and inside of the car, that is, reinforcement learning can be applied to ITS
control system from the outside and inside of the car.

In this way, we can divide the ITS control system into external and internal. The
external mainly refers to the traffic light control system that affects the driving of the car,
and the internal mainly refers to the braking system that affects the driving of the car.
Here we mainly discuss the application of reinforcement learning in ITS control system
from these two major perspectives.

2.1 Internal part of ITS control system

The braking system is the core of the vehicle driving control system, which determines
the speed of the vehicle and the safety of the passengers. When we take the vehicle as the
research object of the ITS control system, to a certain extent the main control system of
the vehicle itself can be used as the internal part of the ITS control system.

Most traditional automatic braking systems are based on rules, which specify specific
braking control protocols for different situations. But on real roads, various situations may
occur. In other words, the braking rules formulated in advance are likely to fail. This shows
that the rule-based braking method has limitations.

In ITS, autonomous driving is an important part and is the technological development
trend of ITS in the future. When we consider the internal part of the ITS control system,
we should proceed from the perspective of autonomous driving. Different from the human-
controlled braking system, the automatic braking system of autonomous driving is more
autonomous and can be discussed as an internal part of the ITS control system. The
automatic braking system is the soul of achieving safe and autonomous driving. When
a threatening obstacle is detected, the system can automatically reduce the speed of the
vehicle. Automatic braking should provide safe and comfortable braking control, without
premature or late braking performance.

In recent years, people’s interest in machine learning and reinforcement learning has
exploded. Especially deep neural network (DNN) technology has been widely used in au-
tonomous driving technology. Reinforcement learning (RL) technology has also been sig-
nificantly improved with the adoption of deep neural network (DNN) technology. This
technique, called Deep Reinforcement Learning (DRL), performs quite well on various
challenging robotics and control problems. In [3], Deep Q-network (DQN) DRL technology
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Figure 1: A simple example of autonomous braking systems based on DRL.

Figure 2: A simple framework for traffic light control based on DRL.

was proposed, which uses DNN to approximate q-valued functions. The results show that
DQN is superior to human experts in various Atari video games. In recent years, DRL has
been applied to the control systems of autonomous vehicles, such as oin Reference [4, 5].
A simple example of autonomous braking systems based on DRL is shown in Figure 1.

2.2 External part of ITS control system

Although autonomous driving is the future development trend of ITS, it will take a long
time to realize Level 5 autonomous driving (fully autonomous driving). Compared with
autonomous driving, optimizing traffic lights in the traditional sense is more cost-effective
and easier to implement. Based on the above, we also take the vehicle (car) as the research
object. Here, we will discuss the representative application example of reinforcement learn-
ing, intelligent traffic light control, from the outside of the ITS control system.

At present, most traffic lights are still controlled by a predetermined fixed time plan
[6], not designed by observing actual traffic. Recent studies have proposed manual rules
based on real traffic data [7]. However, these rules are still predefined, and real-time traffic
cannot be dynamically adjusted. Although most of the existing traffic lights are operated
by manual rules, the intelligent traffic light control system should be dynamically adjusted
to adapt to real-time traffic. Thanks to the rise of machine learning, the use of deep
reinforcement learning technology for traffic light control is an emerging trend. A simple
framework for traffic light control based on DRL is shown in the Figure 2.
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3 Conclusion

With the acceleration of the urbanization process, more and more people move to the
city, and with the expansion of the city, there are also various problems affecting human
production and life, especially the core traffic problem of the city. The development of
science and technology makes it possible for an intelligent transportation system to solve
traffic problems. However, as an important part of intelligent transportation, the control
mode should be paid more attention to and optimized.

In this paper, two kinds of internal and external control modes, which influence the
intelligent transportation system, are discussed in the field of reinforcement learning, con-
sidering the vehicle as to the main analysis object.
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Since Risk management is the identification, evaluation, and management of threats
to the capital and income of an organization, threats or risks may come from a vari-
ety of sources, including financial insecurity, legal liabilities, policy errors, accidents, and
disasters. In digitized enterprises, IT security threats and data-related risks, and risk man-
agement strategies have been made a top priority. As a result, the risk management plan
increasingly includes companies’ identification and monitoring processes, including pro-
prietary corporate data, personal information, and intellectual data, for threats to their
digital assets, Including private corporate data, customer identity, and intellectual property
information. Each company and organization, in the event of unforeseen, harmful events,
can cost or cause the company to close permanently. Risk management is still a problem
for most companies nowadays due to different reasons such as failure to use appropriate
risk metrics, the mismeasurement of known risks, failure to take known risks into account,
and failure in monitoring and managing risks. During our research, we have used a Hun-
garian well-known bank data-set which is OTP bank to analyze the customer specifically
companies’ risks given different features of them. We have used different state-of-art or
cutting edge models such as xgboost, catboost and Knn algorithms which are useful for
future prediction of risk level associated with the companies. After cleaning the data-set
and using the different classification algorithms, we came up with comparably good results
which we measured with accuracy evaluation metrics.

1 Introduction

Banks, like other companies, are looking for ways to manage their risks while simultaneously
seeking to increase productivity and efficiency to create value. This performance is only
achieved when banks issue loans to customers from money deposited by shareholders or
customer savings, thereby exposing them to risk in the event of default. Despite this risk,
banks cannot stop providing loans, as this is the main source of their profitability. Thus,
they find themselves in a situation to achieve profitability, on the one hand, and the risk
of default, on the other hand. To achieve success, the only option is good credit risk
management practices, since, in this process, returns are correlated with risk. Because of
the importance and relevance of this area, there is still room for improvement and testing
of SOTA approaches. The greatest innovations revolution in the world was ever created by
AI and specifically machine learning. It offers great opportunities in the financial sector to
increase customer experience, guarantee consumer protection and improve customer risk
management significantly.
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Although the implementation of state-of-the-art machine learning models is easier than
ever, it is challenging to design and implement systems that support real-world financial
applications. Since the global financial crisis, risk management in banks has become more
prominent. Thereby, the detection, measurement, reporting, and management of risks have
been a continuous focus. This paper aims to analyze and evaluate those machine-learning
techniques that are researched within the context of banking risk management and make
a predictive analysis of customers. Companies being partners of a Hungarian bank are
categorized at a minimum, average, and high risk based on their historical financial status.
The categorization is based on the capital, the taxes paid, the net sales revenue, the
current state, and other criteria. We have used different supervised learning models to
classify the companies’ risk levels so that we have chosen those algorithms that have the
highest accuracy and performance. We discuss the results in detail and present multiple
comparisons using a table that includes all machine learning models that were used and
their accuracy in different versions respectively

2 Related Works

Credit risk is considered as the chance of loss that will occur when the loan or any other
line of credit by a particular debtor is not repaid (Campbell, 2007) [1]. Since 2008, financial
experts around the world have researched and analyzed the primary factors underpinning
the credit crisis to identify problematic behavior and effective solutions that can help
financial institutions avoid catastrophe in the future. Long ago, the Basel Committee on
Banking Supervision (1999) has also identified credit risk as a potential threat to the
banking sector and developed certain banking regulations that must be maintained by the
banks around the world. Owojori, Akintoye, and Adidu (2011)[2] stated that there are
legislative inadequacies in the financial system especially in the banking system that are in
effect as well as lack of uniform credit information sharing amongst banks cause problems.
Thus, the authors urge the fact that banks need to emphasize better risk management
strategies that may protect them in the long run.

Kou, Chao, Peng, Alsaadi and Herrera-Viedma, (2019) [3] identified that financial sys-
temic risk is a major issue in financial systems and economics. Machine learning methods
are employed by researchers that are trying to respond to systemic risks with the help of
financial market data. Machine learning methods are used for understanding the outbreak
and contagion of the systemic risk for improving the current regulations of the financial
market and industry. The paper studies the research and methodologies on measurement of
financial systemic risk with the help of big data analysis, sentiment analysis, and network
analysis. Machine learning methods are used along with systemic financial risk manage-
ment for controlling the overall risks faced by the banks that are related to hedging of the
financial instruments of the bank (Kou, Chao, Peng, Alsaadi, Herrera-Viedma, 2019) [3].

3 Problem Statement

As part of this work, we were given anonymized data, which is described in section 4.
The purpose of this work is to perform experiments using various machine learning models
to obtain the best accuracy in predicting which group a company belongs to a certain
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category. During the course of our work, we encountered the following challenges:

1. Highly imbalanced number of samples within the classes

2. A small number of features environment.

3. Lots of noisy data

4 Dataset

We use the Opten Corp data set for the experimentation, obtained from a Hungarian
bank. It contains 39,3737 records with 11 company features. The objective is to build a
supervised classifier that has high accuracy in distinguishing single companies between the
three classes (i.e. high, medium, or low risk).

The bank dataset consists of 11 features, ranging from the company name to the finan-
cial status of the company such as tax paid, capital, and others. Based on the available
information, our target was to classify companies based on their current financial status by
using the more important features. The dataset had missing values for the features net sales
revenue, tax paid, capital, and rating with 1004, 1169, 376, 6890 in number respectively.

5 System

In this work we have implemented the most common and novel models for risk manage-
ment task, the architecture of each of which will be discussed in details as well as model
implementation information. As the additional step we have implemented very general
algorithms to compare them with SOTA approaches.

6 Evaluation

For evaluating metrics the accuracy was used. The accuracy of a machine learning classi-
fication algorithm is one way to measure how often the algorithm classifies a data point
correctly [4]. Accuracy is the number of correctly predicted data points out of all the data
points. More formally, it is defined as the number of true positives and true negatives di-
vided by the number of true positives, true negatives, false positives, and false negatives.
A true positive or true negative is a data point that the algorithm correctly classified as
true or false, respectively. A false positive or false negative, on the other hand, is a data
point that the algorithm incorrectly classified. For example, if the algorithm classified a
false data point as true, it would be a false positive. Often, accuracy is used along with
precision and recall, which are other different metrics that use various ratios of true/false,
amd positives/negatives results. Together, these metrics provide a detailed look at how the
algorithm is classifying data points.

7 Results

The experimental results of the models were compared with each other in the resulting ta-
ble. According to the experimental results presented, the tuned SOTA model outperformed
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the other models in accuracy estimation.

8 Conclusion

In this paper, we have dealt with the risk management task. We used SOTA approaches and
implemented very general algorithms with specialization on financial data . Experiments
were carried out to verify the effectiveness of the proposed method. Experimental results on
the dataset showed that the tuned catboost model performed well in the risk management
task. The future direction of the research is to fit the model on a new large-scale financial
open-source dataset.
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Abstract

An adaptive finite element method is developed here for the numerical solution of
one-dimensional boundary value problems. The method is based on a neural network
representation of continuous, piecewise linear functions. The proposed optimization
procedure is demonstrated in a test problem.

1 Introduction

Neural networks have proven their usefulness in a wide range of scientific computing. For
classical problems in the numerical analysis, its application is less usual. In this contribu-
tion, we propose a way to contribute to this research direction.

For the formal introduction of neural networks, we refer to [3] and [4]. For our purpose,
it is sufficient to use that one can assign to any neural network NN a real vector function
NN : Rd0 → RdN , which maps to the input an output value. The function itself is
given in concrete terms using some internal parameters. The main power of this approach
lies in the efficient optimization procedure, which drives the optimal choice of these model
parameters. For this, we mostly use given input-output pairs and choose parameters, which
lead to smallest deviation between computed and known outputs. In the absence of given
pairs, we can also try to define a meaningful loss function, which should be minimized
directly to get optimal parameters.

The automatic differentiation in the related program packages makes possible to deal
also with millions of parameters. At the same time, we should not misuse this capability
and keep the number of parameters at a moderate level to avoid overfitting and enhance
the computational efficiency.

Accordingly, we use here the idea to solve a problem in numerical analysis by converting
it into a multidimensional minimization.

2 Problem statement and methods

We investigate two-point boundary value problems for second-order ordinary differential
equations of the following form:

{
−u”(x) + c(x)u(x) = f(x) x ∈ (a, b)

u(a) = u(b) = 0,
(1)
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where c ∈ L∞(Ω) and f ∈ L2(Ω) are given.
We are looking for a numerical approximation uh : [a, b]→ R of u as a piecewise linear,

continuous function. In concrete terms, we assume that they are linear on [tj , tj+1] with the
slope sj , where t0 = a, tN+1 = b. Such a function can be characterized with [t1, t2, . . . , tN ]
and [s1, s2, . . . , sN ].

According to [4], such a function xh can be identified with the neural network

xh(t) := NN (t) = a2 · ReLu(a1t+ b1) + b2, (2)

with the input t, and parameters on the first layer

a1 = (1, 1, . . . , 1) ∈ RN+1 and b1 = (0,−t1, . . . ,−tN ) ∈ RN+1

and on the second layer

a2 = (s1, s2 − s1, . . . , sN − sN−1, sN+1 − sN ) ∈ RN+1 and b2 = x0 ∈ R,

respectively. Note that here sN+1 is a known parameter. For the details, see [4].
To find optimal parameters in the above setting, we cannot use known input-output

pairs. Instead, the following statement delivers an appropriate loss function.

Theorem 1 The function u ∈ H1
0 (a, b) is the unique solution of (1) if and only if u ∈

H1
0 (Ω) is the unique minimum of J : H1

0 (a, b)→ R:

J(u) =
1

2

∫ b

a
(u′)2 + cu2 −

∫ b

a
f · u. (3)

In this way, our approach is to find parameters t = (t1, t2, . . . tN−1) ∈ RN−1 and
s = (s1, s2, . . . sN−1) ∈ RN−1 such that J(us,t) := Js,t is minimal, where us,t denotes the
piecewise linear function described at the beginning of the section.

To optimize the performance of our algorithm, we use the following statement.

Lemma 2 For any fixed parameter set t above, the minimum of Js,t is attained, if the
corresponding function us,t is the finite element solution of (1) using a piecewise first order
basis with internal vertices t1 ≤ t2 ≤ · · · ≤ tN .

For the proof of the above two statements, we refer to [1]. Using these results, we can
reduce the number of parameters in the minimization problem and consider henceforth
the following problem:

Find the parameter t such that Js(t),t is minimal, where s(t) corresponds to the finite
element solution in Lemma 2.

Observe that this is, indeed, an adaptive finite element algorithm, where the basis
points t1, t2, . . . , tN are to find in an optimal way.

It is important to ensure that we have an optimal parameter set also in the discrete
case, which is stated in the following:

Lemma 3 For any fixed N , we have t and s above such that Js,t is minimal.
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Proof:
According to Lemma 2, it is sufficient to ensure the existence of t ∈ RN , for which

Js(t),t is minimal. Since the mappings t→ s(t) and (t, s)→ Jt,s are continuous, the same
applies for t→ Js(t),s. On the other hand, indeed the definition domain of this mapping is

TN = {t = (t1, t2, . . . , tN ) : a ≤ t1 ≤ t2 ≤ · · · ≤ tN ≤ b} ⊂ RN ,

which is compact, and therefore, we really have a local minimum at some t ∈ TN . �

Observe, if the minimum is attained at the boundary of TN , then tj = tj+1 for some
index j ∈ {0, 1, . . . , N}. This results in exactly the same piecewise linear approximation
as . . . , tj−1, tj ,

tj+tj+2

2 , tj+2, . . . with the slopes . . . , sj−1, sj+1, sj+1, sj+2, . . . . In this way,
the minimum should also attained in the interior of TN .

3 Implementation issues and numerical results

Indeed, to find an optimal t ∈ TN , we had to perform a conditional minimization. It turns
out that unconditional minimization can harm the order of the components in t.

To reduce the computational complexity, we introduce the following penalty term to
avoid conditional minimization:

Pt = K · (|t1 − 0|+ |t2 − t1|+ · · ·+ |1− tN | − 1),

where K = 1000 in the experiments. Clearly, if t ∈ TN , this term should be zero. Alto-
gether, we computed the minimum of

t→ Js(t),t + Pt

starting from a uniform division of the interval (a, b). To approximate integrals in the loss
term and in the finite element method, we applied a three-point Gauß integral. One can
increase the accuracy of integration using the built-in Matlab subroutines but this does
not increase further the accuracy of the final result. To compare our method with a similar
one in [2], we use the same test problem
{
ü(x) = 200

9 · exp{−100(x− 1
3)2} · (1800 · x3 − 1200 · x2 + 173 · x+ 6) x ∈ (0, 1)

u(0) = u(1) = 0,
(4)

where the analytic solution is given by u(x) = x · (exp{−100(x− 1
3)2} − exp{−400/9}).

The finite element solution, i.e. optimal piecewise linear approximation for (4) with
the starting value t and with the optimal t are shown in Figure 1 and 2, respectively.

Also, we have tested the computational error of the adaptive finite element method
given by the above optimization process in the H1

0 (a, b)-norm. The results are shown in
Table 3.

N 4 9 19 39 79

errad 4.45 0.637 0.305 0.155 0.0774
errun 7.52 0.282 0.188 0.109 0.0608
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Figure 1: Finite element solution of (4)
with t = (0.1, 0.2, . . . , 0.9) (dashed) to-
gether with the analytic solution of (4).

Figure 2: Finite element solution of (4) with
the optimal t together with the analytic so-
lution of (4).

One can realize that the advance of adaptive methods is significant only in the case of
relatively coarse meshes. On the other hand, the test problem in (4) has smooth solution.
Therefore, on a sufficiently fine mesh, its solution can be approximated well also without
adaptive refinement.
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We consider the numerical treatment of ordinary differential equations’ initial value
problems where the approximate solution has the form of a two-layer neural network. Since
the exact solution to the problem is unknown (and therefore there is no training set avail-
able), the parameters of the neural network (i.e., the approximate solution) originate from
the minimisation of a loss function. Thus, the right choice of the loss function is inevitable.
Namely, the appropriate loss function needs to perform well in numerical experiments, and
should be minimal for the exact solution. In our work we present the properties of the
neural network, and aim at deriving the form of the loss function by using the alternate
forms of the error function.

1 Initial value problem

Let T > 0 and d ∈ N be arbitrary, f : [0, T ] × Cd → Cd be a continuous function, and
x0 ∈ Cd be a given vector. Then we consider the following initial value problem for the
continuously differentiable unknown function x : [0, T ]→ Cd:

{
x′(t) = f(t, x(t)), t ∈ (0, T ]

x(0) = x0.
(1)

Our aim is to approximate the exact solution x(t) for all t ∈ [0, T ] with the continuous
function xn(t) being of the form of a neural network, where n ∈ N is arbitrary but fixed.
We will show that xn(t) corresponds to a continuous piecewise linear function with n pieces
of breaking points. The function xn(t) (via its parameters) should be then obtained by
minimising an appropriate loss function L(Θn, T ). Without loss of generality, we assume
that xn(0) = x0.

2 Approximate solution as a neural network

Our aim is to approximate the exact solution x to problem (1) with d = 1 by the function
xn : [0, T ]→ C given by the following two-layer neural network

x(t) ≈ xn(t) := 〈a2,ReLu(a1t+ b1)〉+ b2, (2)

where 〈·, ·〉 denotes the scalar product in Cn, and the name ReLu stands for rectified linear
unit, being a common activation function defined as

ReLu(y) := max{0, y} =
y + |y|

2
, y ∈ Cn.

Developments in Computer Science, Budapest, pages 139 - 142, 2021.

139



The parameters of the neural network are chosen as

a1 := (1, 1, . . . , 1) ∈ Rn, b1 := (0,−t1, . . . ,−tn−1) ∈ Rn

a2 := (s1, s2 − s1, . . . , sn − sn−1) ∈ Rn, b2 := x0 ∈ C

with some tj > 0, sj ∈ R for all j = 1, . . . , n. We collect these parameters in the vector

Θn := (x0, t1, . . . , tn−1, s1, . . . , sn) ∈ C2n, (3)

which depends on n and T . To ease the notation we do not indicate its dependency on T .
Then the neural network xn(t) can be constructed as in (2) by using the parameter vector
Θn defined in (3). The first important result is that the neural network xn(t) has exactly
the piecewise linear form we expect.

Theorem 1 For any n ∈ N, the neural network xn : [0, T ] → C of the form (2) with
parameters (3) corresponds to a continuous piecewise linear function with xn(0) = x0,
and has breaking points in t1 < t2 < · · · < tn−1 and slopes sj on (tj−1, tj), j = 1, . . . , n.
Moreover it has the recursive form

xn(t) = xn(tj−1) + (t− tj−1)sj , t ∈ [tj−1, tj ], j = 1, 2, . . . , n.

The proof relies on the direct reformulation of the representation (2).

Although, we presented the form (2) of the neural netwok in the case d = 1, one can
define it in a similar manner also for any d ∈ N leading to a similar statement as in
Theorem 1. Therefore, in the following, we will consider the general case.

3 Error functions

In numerical analysis, the convergence of the approximate solution xn to the exact one x
is shown by analysing the global error ‖x(T )−xn(T )‖. More precisely, the approximation
is called convergent at T > 0 if ‖x(T ) − xn(T )‖ n→∞−−−→ 0. Then for any 0 6= zT ∈ Cd,
the condition 〈x(T ) − xn(T ), zT 〉 n→∞−−−→ 0 is sufficient for the convergence. Thus, we will
investigate the error function

εn(T ) := 〈x(T )− xn(T ), zT 〉 for any zT 6= 0, (4)

and seek loss functions L(Θn, T ) for which the condition ‖εn(T )‖ n→∞−−−→ 0 holds under
some constraints. Due to the considerations above, this implies the convergence of the
approximation, too. That is, if we find a suitable loss function, we ensure that the neural
network possessing the parameters obtained by the minimisation of the loss function, will
converge to the exact one for increasing number of breaking points (or time levels).

Hence, our next aim is to find a loss function with the property presented above. To
do so, we consider the aposteriori error function proposed by Kehlet and Logg in [1]:

ε̂n(T ) =

∫ T

0

〈(
x′n(t)− f(t, xn(t))

)
, zn(t)

〉
dt, (5)
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where zn(t) is the solution to the adjoint equation which is defined as follows. For all
t ∈ [0, T ], consider the linear operator (matrix)

An(t) :=

∫ 1

0
(∂2f)

(
t, sxn(t) + (1− s)x(t)

)
ds (6)

mapping Cd → Cd. Then for any given zT ∈ Cd, the adjoint problem is defined as follows
{
z′n(ξ) = −An(ξ)∗zn(ξ), ξ : T → 0

zn(T ) = zT ,
(7)

where the star denotes the adjoint of the operator. We note that the variable ξ varies be-
tween T and 0, that is, in the reverse order. Therefore, the adjoint problem (7) corresponds
to the following one {

v′n(t) = An(T − t)∗vn(t), t ∈ (0, T ]

vn(0) = zT
(8)

for the unknown function vn : [0, T ] → Cd defined as vn(t) := zn(T − t) for all t ∈ [0, T ].
This equivalence is used when analysing the error functions.

Our next step is to show that εn = ε̂n holds.

Theorem 2 For any T > 0 and 0 6= zT ∈ Cd, consider problems (1) and (7) with solutions
x, zn : [0, T ]→ Cd, respectively. Let xn : [0, T ]→ Cd be of an arbitrary form. Then we have
the relation εn(T ) = ε̂n(T ), that is,

〈x(T )− xn(T ), zT 〉 =

∫ T

0

〈(
x′n(t)− f(t, xn(t))

)
, zn(t)

〉
dt

for any T > 0.

Proof: We present the idea of the proof.

As a first step we rewrite the original nonlinear problem (1) as the nonhomogeneous
nonautonomous linear problem

{
x′(t) = An(t)x(t) + gn(t), t ∈ (0, T ]

x(0) = x0
(9)

with the linear operator (matrix) An(t) : Cd → Cd already defined in (6) and

gn(t) = f(t, xn(t))−An(t)xn(t), t ∈ [0, T ].

Then by using the variation of constants formula, we have

x(T ) = En(T, 0)x0 +

∫ T

0
En(T, t)gn(t) dt, (10)

where (En(t, s))0≤s≤t≤T denotes the evolution family generated by the operator family
An(t). We note that for d = 1 we have

En(t, s) = exp
(∫ t

s
An(ξ) dξ

)
, 0 ≤ s ≤ t ≤ T. (11)
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When rewriting the left-hand side of the statement, we use the form (10), the identities

∂tEn(t, s) = An(t)En(t, s), ∂sEn(t, s) = −En(t, s)An(s),

and the equivalence vn(t) = zn(T − t), where vn is the solution to (8). The latter implies,
in particular, that En(T, t)∗ = Fn(T −t, 0), where (Fn(t, s))0≤s≤t≤T is the evolution family
generated by An(T − t)∗. Putting all these together yields the assertion.

4 Loss functions

Loss functions can be constructed based on the error function in the proof of Theroem 2.
For example, one can use a numerical approximation of the right-hand side of (11); we
do not present the corresponding formulas here. It turns out that suitable approximations
lead to loss functions L(Θn, T ) with the property

‖εn(T )‖ ≤ L(Θn, T ). (12)

We introduce the following notations for any n ∈ N fixed:

Θ∗n := arg min
Θn

L(Θn, T ),

x∗n(T ) := the neural network (2) with parameters Θ∗n,

ε∗n(T ) := x(T )− x∗n(T ).

Now we can state our main result.

Theorem 3 Suppose that property (12) holds. Then for any T > 0, we have the implica-
tion

L(Θ∗n, T )
n→∞−−−→ 0 ⇒ ‖ε∗n(T )‖ n→∞−−−→ 0.

The proof is a direct consequence of property (12).
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Abstract

A neural network approach is presented for solving Laplace equations. The mathe-
matical basis of this approach is the boundary integral method. A shallow and simple
neural network is used. The number of the parameters in the neural network is op-
timal, which results in a quick learning. A numerical experiment is also presented.
We can avoid in this way the construction of grids or meshes, which is a significant
advance of our approach.

1 Introduction

Neural networks are used nowadays in almost all area of scientific computing. In most
cases, these are applied if no mathematical model was constructed to simulate or solve a
real-life problem. Therefore, in most cases, large or even overly large parameter sets are
applied, which can successfully fitted to the underlying problem. The main strength of
this approach is the efficiency of this fitting, which can be considered also as an efficient
optimization algorithm. For this, a wide arsenal of modern optimization methods are used
including stochastic methods and automatic differentiation. Moreover, they are supported
with program libraries and efficient subroutines.

We want to make use all of them to solve a basic but important benchmark problem
in the numerical analysis. Laplace equations emerge frequently as a compound in real
life problems by modeling rotation-free fluid dynamics, divergence-free electrodynamics or
even simple diffusion, heat conduction processes [3].

For a detailed introduction of neural networks, we refer to [2]. From the mathematical
point of view, we consider it as a function NN : Rd0 → RdN depending on a parameter set
Θ. In this framework, vectors in Rd0 are called the input and vectors in RdN the output
vectors, respectively In this framework, vectors in Rd0 are called the input and vectors in
RdN the output vectors, respectively In this framework, vectors in Rd0 are called the input
and vectors in RdN the output vectors, respectively. Our task is to find the parameter set
Θ0 such that the corresponding function NNΘ0 approximates given input-output pairs
(u1,v1), (u2,v2)), . . . , (uN ,vN ), as accurate as possible.

Formally, we have to solve the minimization problem

min
Θ

N∑

j=1

ρ(NNΘ(uj),vj),
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with some metrics ρ, or frequently, for some norm ‖ · ‖, we have the following:

min
Θ

N∑

j=1

‖NNΘ(uj)− vj‖2.

2 Problem statement and methods

Recall, that the elliptic boundary value problem for the unknown function u : Ω→ R with
the Laplacian operator has the form

{
∆u(x) = 0 x ∈ Ω

u(x) = g(x) x ∈ ∂Ω,
(1)

where Ω ⊂ R2 is a bounded Lipschitz domain and g : ∂Ω→ R is given.
In real-life cases, however, the function g is known only in isolated points p1,p2, . . . ,pK

of ∂Ω and also, the unknown function has to be determined in certain points x1,x2, . . . ,xL.
Of course, in this way, we do not have a well-posed problem. Using continuous dependence
of the solution on the boundary data, for a smooth function g, we obtain an accurate
approximation of u, if it is computed based on the above discrete data.

To have training data, i.e. pairs (uj ,vj)j=1,2,...,N above, we should know solutions in
some cases. Here we use the concept of the fundamental solutions given with

ψqj : R2 \ {qj} → R, ψqj (x) = − 1

2π
ln |x− qj |.

We know that ∆ψqj = 0 on R2 \ {qj}, and therefore, if qj 6∈ Ω, this function delivers
an input-output pair

uj = (ψqj (p1), ψqj (p2), . . . , ψqj (pK)) and vj = (ψqj (x1), ψqj (x2), . . . , ψqj (xL)).

Taking it for j = 1, 2, . . . , N , we obtain a number of N training data such that run a
neural network to learn the solution the discrete Laplace equation.

The motivation of this approach is the so-called method of fundamental solutions
introduced in [1]. Here the approximation uh of u in (1) is sought in the following form:

uh =
N∑

j=1

ajψqj ,

with some real coefficients {aj}j=1,2,...,N . Also, the points {qj}j=1,2,...,N are chosen to be
outside of the domain in the near of the boundary. In this way, an appropriate linear combi-
nation of the boundary values {g(pk)}k=1,2,...,K will give all the values uh(x1), uh(x2), . . . , uh(xL).

Accordingly, we built a neural network with the following structure:

• Input size: K, output size: L.

• We had only one dense layer.

• We did not apply a bias.

• We did not apply any activation function.

• The initial weight wk,l was proportional with (‖pk − xl‖ for k = 1, 2, . . . ,K and
l = 1, 2, . . . , L.
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Figure 1: The computational domain with the boundary points pk, outer points ql and
the three points x1, x2, x3 in the domain.

3 Implementation issues and numerical results

To be convinced of the performance of our approach, we have chosen a non-trivial concave
domain as shown in Figure 1.

Figure 2: Training (orange) and testing
(red) loss in a single run over 1000 epochs.

Figure 3: Training and testing loss of an
average of 30 independent runs over 1000
epochs.

The neural network was trained over 1000 epochs. On a simple laptop, this ran ap-
proximately over 35 seconds. We applied 0.03 as the learning rate, the size K of the input
was 52, while the size K of the input was 3. We have trained the network with 288 data
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pairs and validated the results using 32 pairs.
The method was implemented in Python using the Keras deep learning library.
To smooth the results, we took the average of 30 independent runs. The corresponding

errors are shown in Figure 2 and 3, respectively. In all cases, we have measured the average
squared error loss in the three points x1,x2 and x3. One can realize that training and test
losses are decreasing with a very similar rate. This is also an indicator to have an efficient
neural network.

Until now, the test cases covered only the singular functions ψqj . To complete this,
Therefore, we have also tested our network for the given solution u(x, y) = (x+5)2−(y−2)2

of (1) using the above domain. In all cases, we obtained an accurate prediction and after
training, the computational time to solve the problem was only 1 ms.

Summarized, this approach seems to be very efficient and simple most importantly,
because we do not need to generate a grid or mesh for the numerical solution.
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Abstract

Residual neural networks – ResNets, for short – are a powerful form of convolutional
neural networks, widely used in image recognition tasks. Their main building block,
the residual block, is of the same form as the update rule for a forward Euler scheme,
therefore the network itself can be thought of as an approximation of the solution of
a differential equation.

There are other numerical methods for approximating such a function, including
the linear multistep method. A modified ResNet architecture, christened the LM-
ResNet, has been proposed with a structure based on the update rule of said scheme.
The original article introducing it claimed that the network had shown an improved
performance with standard image classification tasks. I attempt to reproduce some of
these experiments and verify the usefulness of the LM architecture.

1 Introduction

Convolutional neural networks (CNNs) have been the leading tools in artificial intelligence
based computer vision for a decade now. Their structures require very few per-layer pa-
rameters, which allows for more than a dozen layers in one network, a depth that is hardly
achievable without the convolutional structure.

However, plain CNNs with significantly more than 20 layers are still not practical, since
their performance seems to worsen after this threshold. In recent years, residual neural
networks have been proposed as a possible solution for this problem. [2]

The ResNet networks proposed in [2] and [3] consist of residual blocks of shape

xk+1 = xk + f(Θ,xk) (1)

where f represents two (or, in some cases, three) consecutive convolutional layers. This
architecture allows for networks with up to a hundred, or, in some cases, more than a
thousand layers, that achieve record-breaking performances on standard computer vision
tasks.

ResNets have a natural connections with solutions of first-order differential equations.
The key observation concerning the link between the two is that equation (1) can be
rewritten, with ∆t = 1, as xk+1 = xk + ∆tf(Θk,xk), which is a step of a forward Euler
scheme approximating the solution x(t) to the differential equation

ẋ(t) = f(Θ(t),x(t)) (2)
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Remark 1 Instead of ∆t = 1, equation (1) can be written as xk+1 = xk + 1
n f(Θ

′
k,xk),

since all components of f – e. g. the convolutional, batch normalisation and ReLU layers
– are positively homogenous. This form is supported by the fact that in deep residual
networks, the residual functions f(Θk, ·) are close to zero. [1] This reinforces the notion
that deeper ResNets simply correspond to an approximation of equation (2) with more
iterations.

2 The LM architecture

The LM-ResNet model, proposed by Lu et al. [5], is a modification of the plain ResNet
architecture, motivated by its connection with differential equations. The LM modification
of a ResNet architecture replaces residual blocks seen in equation 1 with LM residual blocks

xk+1 = ϑkxk−1 + (1− ϑk)xk + f(xk) (3)

While a plain residual block can be associated with the forward Euler scheme, the
above blocks are motivated by the linear multistep method (hence the name LM-ResNet)
approximation of the same differential equation, described in equation (2). The parameters
ϑk are trainable, and at initialisation sampled from a uniform distribution on [− 1

10 , 0].

So the construction of an LM-ResNet is as follows: take a plain ResNet – more precisely,
a ResNet using preactivational residual units, colloquially known as ResNetV2 [3] – and
follow every residual block with the LM block in equation (3). This adds a few extra
parameters, but the change is negligible – ResNet-20 has more than 270 000 parameters,
and only 9 residual blocks. It is important to note however, that the above construction
is lacking. It does not account for two problems: changing dimensions, and the calculation
of x1.

A typical ResNet architecture consists of three stacks of layers, each of which has
different output dimensions. The plain residual blocks of equation 1 are not sufficient at
the border of these stacks, so parameterless padding shortcuts are used instead, where the
extra dimensions are padded with 0s. This construction is also sufficient for LM-ResNet.

Conversely, the second problem does not appear in a ResNet architecture, which uses
a one-step method. Generally, a (linear) m step method only works if the first m steps
have been calculated by a different method. Following this practice, the first block can be
a simple residual block (option A).

An alternative solution would be to, instead of an identity shortcut, apply a projections
shortcut, so

x1 = Cx0 + f(x0) (4)

where C is a 1× 1 convolution operation (option B). This again increases the number of
parameters in the network, but only by 272 parameters, which is, in all cases, less than
0.1% of all parameters.

Remark 2 Lu et al.’s solutions to the above problems are not made clear in [5], which is
why I have made my own assumptions.
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Model Residual unit
Error

Mean Best Reported

ResNet-20 postactivational 8.34% 8.19% 8.75%

ResNet-32 postactivational 7.67% 7.29% 7.51%

ResNet-44 postactivational 7.94% 7.16% 7.17%

ResNet-56 postactivational 7.60% 6.89% 6.97%

ResNet-110 postactivational 7.19% 6.79% 6.61%

ResNet-164 postactivational 6.28% 5.90% 5.93%

ResNet-20 preactivational 8.58% 8.12% –

ResNet-32 preactivational 7.64% 7.51% –

ResNet-44 preactivational 7.09% 6.98% –

ResNet-56 preactivational 6.76% 6.61% –

ResNet-110 preactivational 6.28% 6.06% 6.37%

ResNet-164 preactivational 5.52% 5.18% 5.46%

LM-ResNet-20 A preactivational 8.62% 8.37%
8.33%

LM-ResNet-20 B preactivational 8.52% 8.45%

LM-ResNet-32 A preactivational 7.77% 7.60%
7.18%

LM-ResNet-32 B preactivational 7.63% 7.28%

LM-ResNet-44 A preactivational 7.10% 6.89%
6.66%

LM-ResNet-44 B preactivational 7.02% 6.84%

LM-ResNet-56 A preactivational 6.91% 6.65%
6.31%

LM-ResNet-56 B preactivational 6.58% 6.28%

LM-ResNet-110 A preactivational 6.07% 5.80%
–

LM-ResNet-110 B preactivational 6.17% 5.98%

Table 1: Different models’ mean and best test error, compared to the error reported in the
original articles

3 Results

Lu et al. have conducted several experiments with the LM-ResNet networks, and concluded
that compared to their plain counterparts, LM architectures of every depth fared better.
I argue that, while their results look promising, some of the comparisons they make are
not adequate.

My focus will be on their results measured on the CIFAR-10 dataset. [4] Lu et al.
tested architectures of depths 20, 32, 44, and 56 layers on CIFAR-10. They compared

Residual neural networks as numerical approximations of differential equations

149



their results to the performance of ResNets of the same depths published in [2], and to
that of the ResNet-110, published in [3]. However, all of the original results were measured
with postactivational units, while Lu et al. uses preactivational units all over. This weakens
the claim that the LM architectures improves performance, since preactivational units have
been known to perform better, albeit they are usually employed in deeper networks.

The other, main difference between Lu et al.’s and the original experiments is the
size of the training set. The CIFAR-10 dataset consists of 60 000 images, 10 000 of which
are traditionally used as a testing set. Lu et al. used all the remaining 50 000 images as
training datapoints, while the original ResNet results were measured on models trained
on a 45 000 image training set, with 5000 images used as validation.

I have attempted to recreate these experiments, as well as some that were missing from
the original papers. Hyperparameters and other details of the training matched those in
[2]. Table 1 shows the results. Each experiment was run five times to account for random
initialisation. This is contrary to the results reported in [2], where only the ResNet-110
tests were run multiple times. This is probably responsible for the fact that the reported
error usually lies between my best and mean errors, in the case of ResNets. This is not
the case for LM-ResNets, which is at least partially due to my using the smaller, 45 000
picture training set.

The experiments show that, although not by a large margin, LM-ResNets do perform
better, even when compared against ResNets using preactivational units. They also confirm
that preactivational units are a better building block for ResNets, although their effect
is less significant in shallower models. Experiments run with LM-ResNet-110 – that were
missing from [5] – show that switching to the LM architecture also affects deep models
more, which is another evidence to the claim that the better performance of the LM-
ResNets is due to the change in architecture, not the few extra parameters.
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1 Introduction

In the recent years, machine learning has been connected to the field of differential equa-
tions by people finding formulae reminiscent of that of numerical time integrators inside
neural networks [3, 2]. This has led to the discovery of the adjoint method as a continu-
ous analogue of backpropagation [1]. In this manuscript, inspired by [1], we consider the
problem of finding a differential equation such that the trajectories of some of its solutions
best fit a set of data.

We start with the mathematical formulation of the problem. Given a time interval
[t1, tN ] with one of its subsets S containing t1, a sample of time-value pairs {(s, g(s))}s∈S ⊂
(R×Rn)S , a set of parameters Θ, and a family of functions locally Lipschitz in their second
variable

{fθ : R× Rn → Rn | θ ∈ Θ} ,
we consider the family of initial value problems

{
ẋ(t) = fθ(t, x(t)) t1 < t < tN , θ ∈ Θ,

x(t1) = g(t1),

and seek a parameter θ ∈ Θ such that the corresponding solution xθ provides a sufficiently
good approximation of the sample in the sense that the functions xθ|S and g are sufficiently
close in some seminorm.

We refer to this process as learning (via) a differential equation. Either theoretical,
when S is an interval; or practical, when it is a discrete set. The latter case is the one that
allows for numerical experiments, which we carry out using the adjoint method outlined
in [1].

As we shall soon see, the empirical data is sometimes better described with a differential
equation, the dimension of which is different than that of the data. In this case, first,
the data may be lifted, then the solution of the equation projected back to the original
dimension. To achieve this, we will use a simple linear transformation P and its transpose
P T . We prefer not to use more sophisticated mappings, especially ones which depend
on the parameter θ, since doing so may obscure the learning ability of the differential
equation.

In the following pages we will mainly restrict our attention to families of linear au-
tonomous systems, that is, we consider families of the form

{
ẋ(t) = Ax(t) + b t1 < t < tN ,

x(t1) = P T g(t1).
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We shall seek to choose the unknown parameter θ = (A, b) ∈ Rn×n × Rn such that an Lp

seminorm of the differences is minimized. In our numerical experiments, we start from a
discrete sample with the set of times S = {t1 . . . tN}. Thus, we choose to minimize the pth
power of the discrete Lp norm via the following loss function

L(θ) =

N∑

j=2

(tj − tj−1) |Pxθ(tj)− g(tj)|p ,

where P is the aforementioned linear transformation. Unless stated otherwise, P simply
discards some of the coordinates, and p = 1.

2 Investigating simple physics problems

In this section we consider some physics problems and show that they can be learnt both
in theory and in practice.

2.1 Free fall

As a motivating example, consider the perfect free fall of a body. Can we learn what
differential equation is governing its movement from a set of measurements of its position?
The model says that if the position and speed of the body at time 0 are 0, then the position
of the body at time 0 ≤ t ≤ 1 is going to be

g(t) =
10

2
t2.

The natural model leads to the two dimensional system

d

dt

[
x
ẋ

]
=

[
0 1
0 0

] [
x
ẋ

]
+

[
0
10

]
(1)

considered on (0, 1); with initial value P T g(0) =
[
1 0

]T · g(0) =
[
g(0) 0

]T
.

This means that the theoretical learning of g is possible with a family of two dimen-
sional autonomous linear system that contains this matrix vector pair.

Considering the practical learning aspect, we can say that starting from a small enough
neighbourhood of optimal parameters, the error term is small, and it decreases as the
optimization proceeds. If the above sparsity pattern is enforced, then the learning proceeds
more confidently, as witnessed by Figure 1.

Lastly, we remark that some further examples of families of differential equations that
permit theoretical learning in this case are

fθ1(t, x) = θ1

√
x, or fθ(t, x) = θ2x+ θ3t+ θ4,

with optimal parameters θ1 = 2
√

5, and (θ2, θ3, θ4) = (0, 10, 0) respectively. Interestingly,
the physically correct one is higher dimensional.
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Figure 1: Loss values encountered while learning t2 on the unit interval with and without
enforcing the sparsity pattern seen in (1). The 20-20 initial matrix vector pairs have been
randomly selected with [0,1]-uniformly distributed coordinates.

2.2 Harmonic oscillator

Another simple example is the harmonic oscillator, that allows us to learn the cosine
function. A two dimensional homogeneous autonomous linear family containing matrices
that are square roots of the negative identity provides a natural choice.

More precisely, learning this function on the unit interval is possible using the trans-
formation P =

[
1 0

]
, if the family includes the matrix

A =

[
0 1
−1 0

]
.

We remark that these are not the only possible choices. Indeed, on the same interval, we
could also conjugate this matrix with an orthogonal matrix Q and replace the previous P
with the transformation PQ.

In practice, with initial matrix A, some apriori steps to minimize ‖A2+I‖F , and adding
this term to the loss function speeds up learning, as seen in Figure 2.

3 Predicting the daily mean temperature

So far we have considered problems where exact theoretical learning was possible, since we
have selected the function g and the family {fθ}θ∈Θ in a way that for some known θ ∈ Θ,
the equality Pxθ|S = g could be achieved. In this section we apply the methodology to
predict the daily mean temperature in Budapest, a problem, where an optimal right hand
side fθ is not known to us.

The prediction process is as follows. Given 30 successive daily temperature measure-
ments, we pair them with time points tj from the unit interval, endpoints included, with
uniform spacing between them. We attempt to approximate these data points using the 2
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Figure 2: Loss values encountered while learning cos on the unit interval with and with-
out the initialization and penalty term ‖A2 + I‖F . The 20-20 initial matrices have been
randomly selected with [0,1]-uniformly distributed coordinates.

dimensional linear autonomous family, and P =
[
1 0

]
. When a sufficiently low loss value

is reached, we solve the initial value problem to time 1 + 1
29 , which yields our prediction

of the temperature of the 31st day.
So far, the prediction power of this model seems limited. Perhaps this is explained by

our insistence on purity. While the choice of P could be reconsidered, finding a family, such
that its solutions are dense in some suitable function space, and therefore approximate
our data well, seems the most promising direction.
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154



Saddle-node bifurcation in a 3-dimensional neural network
model

Anita Windisch∗

Department of Applied Analysis and Computational Mathematics, Eötvös Loránd
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1 Introduction

Recurrent neural networks are widely used for both industrial and scientific purposes such
as in speech and manuscript recognition or to generate subtitles automatically. These
networks can be represented as a directed graph where the nodes are the neurons and
every edge has a weight which means the strength of the connection. In a recurrent neural
network the signals coming out from a neuron can flow back to itself via other nodes so
the spread of the information is not obvious in contrast to the feedforward networks.

In this work the Hopfield model is investigated which can be applied as autoassociative
memory and it has the ability to retrieve the stored data from partial information. The
Hopfield model is a system of ordinary differential equation which takes the form [3]

ẋ = −Dx+Wy + I, yi = f(xi), (1)

where x is the membrane potential and y is the firing rate of the neurons, the matrix
W contains the strengths of connections, I is the external input and f is the activation
function. The main goal is to determine those parameter values for which the number of
equilibria changes, i.e. the saddle-node bifurcation curve when the weight matrix has a
special structure. The fixed points in this case can be considered as memory states of the
network. To investigate the dynamics of the Hopfield model we use analytical tools and
MatCont [2] which is a numerical toolbox of MATLAB for the study of parametrized
dynamical systems and we apply the sigmoid function f(x) = (1 + exp(a − bx))−1 as
activation function.

Different variants of the Hopfield model have already been investigated from several
aspects. R. D. Beer approximated the bifurcation curves by hyperplanes and determined
the probability of choosing parameter values from a given domain in the parameter space
ϑi [1]. D. Fasoli, A. Cattani and S. Panzeri partitioned the neurons according to the sign
of their weights. The dynamics of the model was described in their work depending on
the external input using numerical tools [4]. Despite the fact that the model has already
been investigated in many cases there are still several to be studied. We consider a fully
connected network with the following assumptions. Let the signals coming from a given

∗Acknowledgement Supported by the project ”Integrated program for training new generation of
researchers in the disciplinary fields of computer science”, No. EFOP-3.6.3-VEKOP-16-2017-00002. The
project has been supported by the European Union and co-funded by the European Social Fund.
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neuron have the same weight and assume that none of the neurons are connected to
themselves directly. Then the weight matrix takes the form

W =




0 w2 . . . wn

w1 0 . . . wn
...

...
. . .

...
w1 w2 . . . 0


 .

Let us further assume that the neurons do not receive any external input and let the
matrix D be the identity. After these assumptions the Hopfield model (1) can be written
as

ẋi = −xi +

n∑

k=1

wkf(xk)− wif(xi). (2)

2 The 3-dimensional model

Now let us consider a network which contains a single neuron with weight w1 ∈ R, another
neuron with weight w2 ∈ R and n − 2 neurons with the same positive weight w. Then
Theorem 1 in paper [5] can be applied to reduce model (2) to a lower dimensional system.
Therefore system

ẋ1 = −x1 + w2f(x2) + (n− 2)w3f(x3) (3)

ẋ2 = −x2 + w1f(x1) + (n− 2)w3f(x3)

ẋ3 = −x3 + w1f(x1) + w2f(x2) + (n− 3)w3f(x3)

determines the asymptotic behaviour of the considered network. The weights w1 and w2

are chosen as bifurcation parameters while the other parameters are fixed. Figure 1 shows
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(a) Larger domains of the parameter plane.
The rectangle shows the magnified part
on the right.

(b) Swallowtails and the island are magni-
fied.

Figure 1: Saddle-node bifurcation curves and the number of steady states in system (3)
with w = 15, a = 4, b = 1 and n = 10. The black stars denote the cusp points (CP).
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the saddle-node bifurcation curves in system (3) detected by MatCont when w = 15,
a = 4, b = 1 and n = 10. As it can be seen the model can have 1, 3 or 5 steady states and
the bifurcation curves form 2 swallowtails and an island which are magnified in Figure 1b.

If the value of weight w is changed to 80 then a more complex bifurcation diagram can
be observed which is shown in Figure 2. In this case such domains are also found on the
parameter plane where the system can have 7 or 9 steady states besides those ones where
there are 1, 3 or 5 equilibria.

(a) Larger domains of the parameter plane. (b) Swallowtails are magnified.

Figure 2: Saddle-node bifurcation curves and the number of steady states in system (3)
with w = 80, a = 4, b = 1 and n = 10. The black stars denote the cusp points (CP).

3 The n-dimensional model

In the following our goal is to give a general approach to formalize the saddle-node bifur-
cation in a network which contains n neurons with different and arbitrary weights. In this
case the Hopfield model takes the form of equation (2). First of all let us determine the
steady states by putting the right hand side of the system equal to zero. If we introduce
q :=

∑n
j=1wjf(xj) then equation

xi + wif(xi) = q ∀i = 1, . . . , n (4)

determines the equilibria. After that let us take the solution of equation (4) and denote it
by ϕ(q, w). We note that equation (4) can have several solutions so ϕ is not unique for all
q and w. If ϕ is substituted into the formula of q then equation

F (q) = 0, where F (q) := q −
n∑

j=1

wjf (ϕ (q, wj)) (5)

determines the steady states.
To get the saddle-node bifurcation curve let us take the derivative of equation (5) which

determines when the number of the solutions changes in equation (4). Then F ′(q) = 0 takes
the form 1−∑n

j=1wjf
′ (ϕ (q, wj)) ∂qϕ (q, wj) = 0.

Saddle-node bifurcation in a 3-dimensional neural network model
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After that if we substitute ϕ into equation (4) and differentiate it with respect to q we
get ∂qϕ + wf ′(ϕ)∂qϕ = 1, from which ∂qϕ can be expressed. After some algebra we get
that equations

q =
n∑

j=1

wjf (ϕ (q, wj)) , n− 1 =
n∑

j=1

1

1 + f ′ (ϕ (q, wj))

determine the saddle-node bifurcation in system (2).
This analytical formalization were implemented in MATLAB for the 3-dimensional

case detailed in Section 2. Results were plotted by blue stars in Figure 3 applying w = 80
while the red curves are detected using MatCont. As it can be seen, the results of the
analytic and numerical method fit together.
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Figure 3: Saddle-node bifurcation in system (3). Red curves are calculated numerically,
blue stars are the analytic results.
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1 Introduction

A lot of problems in applications can be written in mathematical form as a differential
equation. Because the original problems generally have some characteristic properties, it
is natural to require the analogous versions of these properties for the numerical solution.
In this short paper, we consider the decrease of the local extremizers of certain nonlinear
parabolic problems and give conditions that guarantee the same property for the numerical
solution obtained with the explicit Euler method.

2 Decrease of the number of the local extremizers of a spe-
cial nonlinear parabolic problem

Let T be a positive real number and define the sets QT = (0, T )×(0, 1), Q̄T = [0, T ]×[0, 1],
Γ0 = {0} × [0, 1] (initial time boundary of Q̄T ), ΓT = {T} × [0, 1] (final time boundary of
Q̄T ). Let us consider the nonlinear problem

∂tu = r(t, x, u, ∂xu, ∂
2
xu), (t, x) ∈ QT ,

u(0, x) = u0(x), x ∈ (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],

(1)

where we assume that the right-hand side function r : Q̄T × R3 → R, (t, x, r3, r4, r5) 7→
r(t, x, r3, r4, r5) and the initial function u0 : (0, 1) → R are sufficiently smooth and guar-
antee the existence and the uniqueness of the solution u ∈ C1,2(Q̄T ).

We recall Nickel’s paper that proves the fact that the number of the local extremizers
decreases. An interval (or specially a point) I ⊂ [0, 1] is a local maximizer of the function
x 7→ u(t, x), x ∈ [0, 1] if the function value is constant in I, the interval I cannot be
extended with this property, but the interval can be extended in both directions (if I =
[0, 1] then this condition can be omitted, if only 0 ∈ I or 1 ∈ I then we require the
extendability only into one direction) to an interval J , where the function value is not
greater than that in I. The local minimizers are defined similarly. It is important to
remark that the above definition differs from the classical definition of local extrema. In
the above setting, absolute extrema are also local extrema, moreover, the inner points of an

Developments in Computer Science, Budapest, pages 161 - 164, 2021.

161



interval where the function is constant are not necessarily local extrema. For example, the
function x 7→ max{x−3/4, 0}+ min{x−1/4, 0}, x ∈ [0, 1] has only one local minimizer at
x = 0 and one local maximizer at x = 1, albeit the function is constant zero in [1/4, 3/4].

Theorem 1 [3] Let us suppose that problem (1) has a unique solution u ∈ C1,2(Q̄T ). Let
us assume that the right-hand side function r satisfies the assumptions

A1) r is non-decreasing in its fifth variable, that is if r′′5 > r′5 then r(t, x, r3, r4, r
′′
5) ≥

r(t, x, r3, r4, r
′
5) for all (t, x) ∈ Q̄T and r3, r4 ∈ R.

A2) r(t, x, r3, 0, 0) ≡ 0 for all (t, x) ∈ Q̄T and r3 ∈ R.
Then the number of the local minimizers (maximizers) of the final time boundary ΓT

is not greater than that of the initial boundary Γ0.

3 Decrease of the number of the local extremizers in the
explicit Euler numerical solution

First we rewrite function r into a more appropriate form. Let us introduce the one-variable
function g(s) = r(t, x, r3, sr4, sr5), where t, x, r3, r4, r5 are fixed constants. Then using
Newton–Leibniz rule, the derivatives of compound functions and assumption A2, we have

r(t, x, r3, r4, r5) = g(1) = g(0) +

∫ 1

0
g′(s) ds =

∫ 1

0
g′(s) ds

= r4

∫ 1

0
∂4r(t, x, r3, sr4, sr5) ds

︸ ︷︷ ︸
q4(t,x,r3,r4,r5)

+ r5

∫ 1

0
∂5r(t, x, r3, sr4, sr5) ds

︸ ︷︷ ︸
q5(t,x,r3,r4,r5)

.

Here ∂ir denotes the derivative of r with respect to the ith variable. By introducing the
notations indicated in the expression, r can be written in the form

r(t, x, r3, r4, r5) = r4 q4(t, x, r3, r4, r5) + r5 q5(t, x, r3, r4, r5). (2)

Because of assumption A1, the function q5 is nonnegative.
The explicit Euler finite difference solution of problem (1) can be constructed as follows.

We define the spatial mesh xi = i∆x (i = 0, 1, . . . , n+ 1), where ∆x = 1/(n+ 1) and n is
a positive integer, and the temporal mesh tj = j∆t, j = 0, 1, . . . , N∆t, where ∆tN∆t = T .
With these notations, the finite difference solution of problem (1) can be generated by the
iteration

uj+1
i =

(
∆t(q5)ji

∆x2
− ∆t(q4)ji

2∆x

)
uji−1 +

(
1− 2

∆t(q5)ji
∆x2

)
uji +

(
∆t(q5)ji

∆x2
+

∆t(q4)ji
2∆x

)
uji+1,

(3)
where i = 1, . . . , n, j = 0, 1, . . . , N∆t − 1, uji approximates u(j∆t, i∆x), the values u0

i are

computed from the initial condition, uj0 = ujn+1 = 0 and we used the notations (q4)ji =

q4(tj , xi, u
j
i ,∆u

j
i ,∆

2uji ), (q5)ji = q5(tj , xi, u
j
i ,∆u

j
i ,∆

2uji ), where

∆uji =
uji+1 − u

j
i−1

2∆x
, ∆2uji =

uji−1 − 2uji + uji+1

∆x2
.
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The iteration (3) can be written as a vector iteration as uj+1 = Xju
j , where uj =

[uj0, . . . , u
j
n+1]T and the tridiagonal iteration matrix Xj may depend on the mesh pa-

rameters ∆t and ∆x and even on the vector uj .
The number of the local extremizers of the iteration vector can be defined as that of

the piecewise linear interpolation function of the points (x0, u
j
0), . . . , (xn+1, u

j
n+1). Using

Whitney transformations [1, 4], it is shown in paper [2] that if the matrix DXD−1 (D =
tridiag[−1, 1, 0]) is a totally nonnegative (TN) matrix (meaning that all its minors are
nonnegative) then the multiplication by the matrix X cannot increase the number of the
local minimizers (maximizers) of a vector. Based on this consideration, we can formulate
the discrete analogue of Theorem 1.

Theorem 2 Let us assume that function r in problem (1) satisfies assumptions A1-A2
(that is it can be written in form (2) with a nonnegative function q5),

A3)

0 < ∆x ≤ 2
mini(q5)ji

maxi |(q4)ji |

(if maxi |(q4)ji | = 0 then there is no upper bound for the mesh size) and
A4)

0 <
∆t

∆x2
≤ 1

4
min
i

1

(q5)ji

then the number of the local minimizers (maximizers) of the iteration vector generated by
the scheme (3) is not increased in the uj → uj+1 step.

Proof: The matrixXj is tridiagonal. It can be easily shown that the matrix Tj = DXjD
−1

is also tridiagonal. It is known [1] that if a tridiagonal matrix is nonnegative and diago-
nally dominant then it is a TN matrix. Thus, the multiplication with Xj cannot increase
the number of the local extrema. The non-negativity of matrix Tj is guaranteed by the as-
sumptions A3-A4. Assumption A3 implies that the offdiagonal elements are nonnegative,
while assumption A4 is enough to the dominance of the main diagonal.

Remark 3 Let us notice that assumptions A3-A4, in the most general case, give an upper
bound for the spatial step-size ∆x (the spatial mesh should be sufficiently fine) and an upper
bound for the mesh-ratio ∆t/∆x2.

Remark 4 For the classical linear problem ∂tu = ∂xxu, where r(t, x, r3, r4, r5) = r5,
the monotone decrease of the local extrema can be guaranteed by the sufficient condition
∆t/∆x2 ≤ 1/4 which is much stricter than the condition of the convergence of the explicit
Euler method (∆t/∆x2 ≤ 1/2).

4 Numerical example

Let us consider problem (1) with r(t, x, r3, r4, r5) = r3
5 (which function trivially satisfies

assumptions A1 and A2) and with an initial function that is discretized as shown on
the left panel of Figure 1. We have used the spatial mesh size ∆x = 1/6. When we set
∆t = 10−8 and perform 10 iteration steps with method (3), we obtain the approximation

Numerical solution of differential equations, qualitative properties and applications

163



Figure 1: The approximations at the initial time level and at t = 10−7 with time step
∆t = 10−8.

at t = 10−7 seen on the right panel. We may observe that both the number of the local
minimizers and the number of the local maximizers have been increased.

When we use the result of Theorem 2, we have to choose the mesh parameters according
to the formula in assumption A4 (q4 is zero in this case). This gives that if we reach
the desired time level t = 10−7 with the consecutive time steps ∆t = 3.6590 × 10−9,
∆t = 1.8813× 10−8 and ∆t = 8.6939× 10−8 then the approximation will be qualitatively
correct. Thus, we have to choose much smaller time step in the first step of the iteration
than the time step of the qualitatively wrong iteration and after that much larger time steps
are also allowed. This example verifies the result of Theorem 2 and shows its applicability
in practice to generate a qualitatively correct solution.
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1 Introduction

Ordinary and partial differential equations are the most important and frequently occur-
ring mathematical models in several areas of applied mathematics. In order to study and
understand certain physical, biological, etc. phenomena, such types of equations should
be solved, often with a high accuracy and/or within a reasonable computational time.
Richardson extrapolation [3] is one of the most powerful numerical techniques which can
be used in the efforts to improve the accuracy and performance of underlying numerical
methods to solve large and complex problems.

The procedure is based on calculating a suitable linear combination of numerical solu-
tions obtained on two meshes by the same underlying numerical method of order p. This
original version of the method is called classical Richardson extrapolation (CRE). The
CRE increases the order of accuracy by one if the right-hand side function of the ordinary
differential equation to be solved is sufficiently smooth. However, this accuracy is not al-
ways sufficient in the applications. The question arises naturally: how can we increase the
order even further?

We present a possible generalization of the CRE, which we call multiple Richardson
extrapolation (MRE). This method can be combined with any one-step numerical method,
e.g., with some Runge–Kutta method, both explicit and implicit. When stiff systems are
solved, which frequently arise, e.g., in chemical models, the numerical method should have
favourable stability properties on a fixed mesh. In search for an accurate scheme with
good absolute stability properties, we will study the absolute stability of the MRE for the
simplest Runge–Kutta methods, namely, the first order explicit Euler (EE) and implicit
Euler (IE) methods and analyse their stability regions.

2 Classical and multiple Richardson extrapolation

The classical Richardson extrapolation (CRE) method allows us to increase the order p of
the underlying method by one. Consider the Cauchy problem for a system of ODE’s

{
y′(t) = f(t, y), t ∈ [0, T ]
y(0) = y0,

(1)

where the unknown function y is of the type R→ Rd and y0 ∈ Rd. Solve the problem with
two different time-step sizes, h and h/2, and denote the numerical solutions at time tn of
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the coarse mesh by zn and wn respectively. Then the combined solution

yCRE,n :=
2pwn − zn

2p − 1
(2)

which is called classical Richardson extrapolation, approximates the exact solution to the
order p+ 1.

The multiple Richardson extrapolation (MRE) is a new procedure [1] obtained by
applying CRE to the combined method (CRE + underlying method of order p), and it
provides an order of accuracy p+ 2.

yMRE,n :=
2p+1y

h/2
CRE − yhCRE

2p+1 − 1
(3)

3 Absolute stability analysis

The absolute stability analysis is based on Dahlquist’s scalar test problem

{
y′(t) = λy(t), t ∈ [0,∞)
y(0) = y0,

(4)

where y : R → C, λ = α + βi ∈ C, y0 ∈ C. The exact solution is y(t) = y0 exp(λt), t ∈
[0,∞), which is bounded iff α ≤ 0. From a numerical method for stiff problems it is
required that the numerical solution of (4) remains bounded for α ≤ 0 as tn → ∞ for
any or at least not too small time-steps h. Let µ := λh, then for a one-step method
yn+1 = R(µ)yn, where the function R, depending on µ is called stability function of the
method. Clearly, the numerical solution remains bounded for the grid points of [0,∞) iff
|R(µ)| ≤ 1. The set S := {µ ∈ C : |R(µ)| ≤ 1} is called stability region of the method with
stability function R(µ). It is desirable that S is as large as possible, and for stiff systems
it should involve C−, i.e., the whole left half-plane with the imaginary axis. If C− ⊂ S,
then the method is called A-stable.

We plotted the stability regions for the EE method as underlying method for different
versions of the Richardson extrapolation in Figure 1. The CRE increases the stability re-
gion, which becomes even larger for the MRE. The figure also shows the stability region
obtained for another possible generalization of CRE, called repeated Richardson extrap-
olation (RRE, [5]), but the MRE has a larger stability region. For more results for other
explicit Runge–Kutta methods see [1]. A larger stability region allows the choice of larger
time steps, which improves the efficiency. However, since for the EE method we always get
bounded stability regions, the application of MRE is not very helpful when stiff problems
are to be solved. Therefore, in the following we investigate the implicit Euler (IE) method
as underlying method.
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Figure 1: Stability regions for EE as underlying method.

In [2] we analysed the absolute stability function and stability region of the IE +
MRE method. The IE and IE + CRE methods have been proved to be A-stable, so their
stability regions include the entire left half-plane [4]. We plotted the stability region (in
grey) of the IE + MRE method in Fig. 2, which suggests that this method is also A-stable.
However, the zoomed picture in Fig. 3 reveals that the combined method IE + MRE is
not A-stable. Since the boundary of the stability region extends to the left half-plane, we
can have problems with the absolute stability when the matrix (or Jacobian matrix) of
the problem to be solved has purely imaginary eigenvalues. It is not recommended to solve
such problems with the IE + MRE method. For more details see [2].

Figure 2: The stability region of IE + MRE.
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Figure 3: Zoomed detail of the stability region of IE + MRE.
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In mathematics there are a lot of problems which can be described by differential equations
of very complicated structure. Most of the time, we cannot produce the exact solution of
these complicated problems, so we have to approximate them numerically using some ap-
proximating method. In this talk we analyse one of these approximating methods, namely
the operator splitting method, which is a widely and successfully used method in numeri-
cal analysis. It helps us when we have a very complicated Cauchy problem, which we want
to analyse.

We consider the following Cauchy-problem in Rm

{
ẏ(t) = Ay(t) =

∑d
i=1Aiy(t) t ∈ [0, T )

y(0) = y0,
(1)

where y : [0, T ] → Rm is the unknown function, y0 ∈ Rm is the given initial vector,
Ai ∈ Rm×m (i = 1, . . . , d) are matrices.
The exact solution of Cauchy-problem (1) can be written directly as y(t) = exp(tA)y(0).
And our aim is to approximate the exact solution numerically on the grid

ωh =
{
tn = n · h, h =

T

N
, n = 0, 1, ..., N

}
.

By using operator splitting, we get a series of simpler Cauchy problems which are
linked through their initial conditions. By applying this method it can be significantly
easier to solve the problem of finding the numerical solution of the original problem.

The two most popular splitting methods include the sequential splitting (SS) and the
Strang-Marchuk (SM) splitting.

The algorithm of sequential splitting in case of two subproblems is the following. In
this case the decomposition of A is A = A1 +A2. If we use the sequential splitting to solve
(1) in grid ωh, means the following two Cauchy-problems:

{
ẏ1(t) = A1y1(t) t ∈ [ti, ti+1]
y1(ti) = xsp(ti),

{
ẏ2(t) = A2y2(t) t ∈ [ti, ti+1]
y2(ti) = y1(ti+1).

where i = 0, . . . , n− 1, and xsp(ti+1) = y2(ti+1).

Remark 1 The dependence of the functions y1 and y2 on i is not indicated.
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The main difference between the sequential and Strang-Marchuk splitting is that the
latter computes the values in the midpoints of the subintervals.

Remark 2 The sequential splitting is a first-order method, the Strang-Marchuk splitting
is a second-order method.

For more details we refer to [1].

As an alternative to the classical splitting methods, we introduce the Average Method
with sequential splitting (referred to as the AMSS method) which is based on the following
idea: dividing the Cauchy problem (1) into d subproblems, using sequential splitting in all
possible sequences, calculating the numerical solutions and then taking their arithmetic
mean and let it be the numerical solution in ωh.

Theorem 3 Solving the Cauchy-problem (1) using sequential splitting for all possible
permutations and then averaging the resulting numerical solutions yields a second-order
method, i.e.

exp
(
h(A1 + . . .+Ad)

)
= exp(hA1)·...·exp(hAd)+...+exp(hAd)·...·exp(hA1)

d! +O(h3).
(2)

If we have d subproblems and use AMSS method to solve Cauchy problem (1), we have
to calculate d! numerical solutions. But if we can find a decomposition for Cauchy problem
(1) that includes commutating matrices, the number of subproblems can be significantly
reduced. Let A = A1 + A2 + . . . + Ad, and suppose that ∃ i, j ∈ N, i 6= j such that
[Ai, Aj ] = 0. Then instead of all the d! permutations, we have d!− (d−1)! = (d−1)(d−1)!
elements. If the decomposition includes more commuting pairs of matrices, the reduction
might be more significant.

We demonstrate that third-order accuracy can be achieved with the AMSS method.
Assume that we have the Cauchy-problem (1), with d = 2. We then have the following

Theorem 4 If and only if A = A1+A2, and A1 and A2 satisfy the condition

[
A1,

[
A1, A2

]]
=

[
A2,

[
A1, A2

]]
then

exp
(
h(A1 +A2)

)
=

exp(hA1) exp(hA2) + exp(hA2) exp(hA1)

2
+O(h4).

We investigated the efficacy of the three splitting methods discussed above on a physical
problem. The model was chosen because of the structure of the matrices involved, i.e. sparse
matrices whose decomposition into a partially commuting set was easy.

A piecewise-linear model of flutter was investigated in [2]. Motivated by this model,
we consider the following 4-dimensional Cauchy problem

{
ẋ (t) = Akx (t) ,
x (0) = x0.

(3)
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where the affine model equations contain the 3 system matrices (k = 0, 1, 2)

Ak =




0 1 0 0
−1 −(p1 + p2µck) −µ2ckp2 0
0 0 0 1
0 ckµ −(p4 − ckµ2) −p3


 ,

with the model parameters given in Table 1. and µ ∈ (0,∞) represents the nondimensional
wind speed.

Parameter c0 c1 c2 p1 p2 p3 p4
Value 5.932 -6.846 2.662 0.1485 0.0147 0.0540 0.2748

Table 1: Parameters of the model

We analized a lot of decompositions of matrix Ak, the most important of them is the
following which contains commutating matrices:

Ak = Ak(1) +Ak(2) +Ak(3) ,

where

Ak(1) =




0 1 0 0
−1 −(p1 + p2µck) 0 0
0 0 0 0
0 0 0 0


 , Ak(2) =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 −(p4 − ckµ2) −p3


 ,

Ak(3) =




0 0 0 0
0 0 −µ2ckp2 0
0 0 0 0
0 ckµ 0 0


 .

For the matrices Ak(1) and Ak(2) Ak(1)Ak(2) = 0 and Ak(2)Ak(1) = 0, so
[
Ak(1) , Ak(2)

]
= 0.

For more decompositions we refer to [3].
First, we tested the first-order methods, we compared the operation of sequential split-

ting with the also first-order explicit Euler method. In experiment 1 we used sequential
splitting, and in experiment 2 we solve the whole original problem without any splitting,
using explicit Euler method. And we got a positive result in terms of runtimes, for the
same order of accuracy splitting methods are faster than the full numerical solution. In
Table 2. it can be seen that by reducing the step size h, the solvers containing splitting
produce the numerical solution 1-2 orders of magnitude faster than the Euler method.

And after that we tested the seond-order methods. We compared the Strang-Marchuk
and the second-order Average Method with the also second-order improved Euler method.
In experiment 3 we use SM splitting, in experiment 4 we use Average Method, solve the
subproblems in parallel. And in experiment 5 we solve the whole problem using improved
Euler method without any splitting. We got positive result in terms of errors because
the errors are two orders of magnitude smaller for the same stepsize h using the splitting
method than using the second-order Euler method. It can be seen in Table 3.
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h Experiment 1. Experiment 2.

1 7.02 · 10−5 2.39 · 10−3

0.1 8.44 · 10−4 5.32 · 10−3

0.01 1.70 · 10−3 1.09 · 10−2

0.001 1.37 · 10−2 7.14 · 10−1

Table 2: Comparison of runtimes (in seconds) for Experiment 1-3.

h Experiment 3 Experiment 5

1 7.20 · 10−4 8.21 · 10−2

0.1 4.90 · 10−7 8.24 · 10−5

0.01 4.78 · 10−10 7.52 · 10−8

0.001 4.76 · 10−13 7.43 · 10−11

Table 3: Comparison of errors in case of experiment 3 and 5

And we got positive result in terms of runtimes too, because the Average Method is
about two orders of magnitude faster than the improved Euler method. It can be seen in
Table 4. This is a good result for the applicability of the Average Method.

h Experiment 3 Experiment 4 Experiment 5

1 4.32 · 10−2 1.15 · 10−4 8.18 · 10−3

0.1 7.55 · 10−1 1.01 · 10−3 1.96 · 10−2

0.01 5.20 · 100 3.65 · 10−3 8.44 · 10−2

0.001 1.53 · 101 1.89 · 10−2 1.13 · 100

Table 4: Comparison of runtimes (in seconds) for Experiments 3-5.

By performing several numerical experiments we demonstrated that the benefits of the
Average Method are the following:

• easy implementation when d is small,

• provides a second-order approximation solution using a first-order method,

• the numerical solutions of the subproblems can be independently computed, therefore
the method can be parallelized.
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Abstract

In this article we have studied the application of the Carleman linearisation method
to partial differential equations. We have analysed it on the Poisson’s equation, which
has important role at physics and engineering. We have investigated the classical finite
difference method and a new method, namely the method of lines. In this case we re-
place the partial differential equation by a second order system of ordinary differential
equations with boundary values. We have investigated some numerical techniques for
this problem including the Carleman linearisation method.

1 Introduction

The Poisson’s equation is a second order partial differential equation, it describes an phys-
ical phenomena in electrostatics [1], [2]. It is the generalization of the Laplace’s equation,
which is also an important equation in physics. In this article we investigate the following
two–dimensional Poisson’s equation

−
(
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y)

)
= f(x, y), (x, y) ∈ (0, L)× (0, L) (1)

where u(x, y) : R2 → R is the unknown function and f(x, y) : R2 → R is a given function.
We suppose that u(x, y) satisfies the homogeneous Dirichlet boundary condition:

u |∂Ω= 0. (2)

The exact solution of the Poisson’s equation can not be determined in general, so we
use numerical methods to solve the equation (1)–(2). In the following we summarize the
numerical methods for this problem.

2 Finite difference method

The finite difference method is a well–known numerical method to solve the Poisson’s
equation [3], [5]. We replace the derivatives in the equation (1) by finite differences.
We define sequences of meshes in the following way:

xi = ih, i = 0, 1, . . . ,M + 1, h =
L

M + 1
,

yj = jh, j = 0, 1, . . . ,M + 1, h =
L

M + 1
.

(3)
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At an inner point (xi, yj), we approximate the second derivatives by the second order
central difference as follows

∂2u

∂x2
(x, y) ≈ u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)

h2
,

∂2u

∂y2
(x, y) ≈ u(xi, yj−1)− 2u(xi, yj) + u(xi, yj+1)

h2
.

We denote Ui,j the approximation of the solution at the point (xi, yj), then the approxi-
mation of the Poisson’s equation (1) has the form

−
(
Ui−1,j − 2Ui,j + Ui,j

h2
+
Ui,j−1 − 2Ui,j + Ui,j+1

h2

)
= f(xi, yj) (4)

for i, j = 1, 2, . . . ,M . At an inner point (xi, yj) the difference scheme depends on the
following five points (xi−1, yj), (xi+1, yj), (xi, yj), (xi, yj+1), (xi, yj−1). The approximation
(4) of the Poisson’s equation can be written into a system of linear equations.

3 Carleman linearistion method

In the following we apply the Carleman linearisation method to solve the problem (1)–(2).
The Carleman linearisation method has been developed to transform sets of polynomial
ordinary differential equations into an infinite dimensional linear system [4]. At first step
we replace the partial differential equation by an ordinary differential equation. Let

u(x, yi) ≈ Yi(x) (5)

be the approximation of the solution of the Poisson’s equation. Then the partial differential
equation (1)–(2) can be written into the following boundary value problem

−
(
Y ′′i (x) +

Yi+1(x)− 2Yi(x) + Yi−1(x)

h2

)
= fi(x), x ∈ (0, L), i = 1, 2, . . .M. (6)

We introduce new functions in the following way

v1(x) = Y1(x) v2(x) = Y ′1(x)

v3(x) = Y2(x) v4(x) = Y ′2(x)

...

v2M−1(x) = YM v2M (x) = Y ′M (x)

(7)
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and the problem (6) can be transformed into a system of differential equations

v′1 = v2

−
(
v′2 +

v3 − 2v1

h2

)
= f1(x)

v′3 = v4

−
(
v′4 +

v5 − 2v3 + v1

h2

)
= f2(x)

...

v′2M−1 = v2M

−
(
v′2M +

−2v2M−1 + v2M−3

h2

)
= fM (x)

(8)

with the following initial conditions

v1(0) = v3(0) = . . . = v2M−1(0) = 0

v2(0) = c1, v4(0) = c2, . . . , v2M = cM ,
(9)

where c1, c2, . . . , cM are unknown values. Our aim is to determine the ci, i = 1, . . . ,M
values that satisfy the following boundary conditions

v1(L) = v3(L) = . . . = v2M−1(L) = 0. (10)

In the following we investigate the numerical methods for the system of ordinary differential
equations (8)–(10).

• The problem (6) is an special second order problem, because the differential equation
is linear. We solve the problem (6) with two different initial conditions. We denote
the solutions

Yi,1 = Yi(x,C1)

Yi,2 = Yi(x,C2),

i = 1, 2, . . . ,M when C1 and C2 are different initial values. Let

wi(x) = λiYi,1(x) + (1− λi)Yi,2(x) (11)

be the linear combination of the two solutions. It can be shown that wi(x) satisfies
the problem (6). If we substitute the boundary conditions we get the following rela-
tionships at the point zero and L: wi(0) = 0 and wi(L) = λwi,1(L) + (1− λ)wi,2(L).
We choose the parameter λ, that the boundary condition is satisfied: wi(L) = 0. We
can determine λi in the following way

λi =
−Yi,2(L)

Yi,1(L)− Yi,2(L)
. (12)

If we determine λi, then the solution of the problem (6) can be determined as well.
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• The system of differential equations (8) can be written in matrix form




v1

v2

v3

v4
...

v2M




′

=




0 1 0 0 . . . 0
2
h2 0 − 1

h2 0 . . . 0
0 0 0 1 0 . . .
− 1

h2 0 2
h2 0 − 1

h2 . . .
...

. . . 0 − 1
h2 0 2

h2 0







v1

v2

v3

v4
...

v2M



−




0
f1(x)

0
f2(x)

...
fM (x)



. (13)

and the initial vector is the following

(
0, c1, 0, c2, 0, . . . 0, cM

)T
. (14)

We can apply the Carleman linearisation method to the system (13). The Carle-
man linearisation method transforms this system of differential equations into an
infinite dimensional linear system. We introduce the vector V , which consists of the
polynomial of vi in the following way

V = (v1, . . . , v2M , v
2
1, . . . , v

2
2M , v1v2, v1, v1v3, . . .)

T . (15)

By omitting the higher order terms, we get the following system of differential equa-
tions

dV

dt
= CNV + F (16)

where CN is the Carleman matrix and F = (0, f1, 0, f2, . . . , 0, fM , . . .)
T . We can use

different techniques to determine the approximation of the solution, for example
operator splitting method or exponential integrator method.

Future plans

In the future we plan to apply the previous techniques to determine the numerical solution
of partial differential equations. It will be interesting to compare the results with the finite
difference method. We would like to apply the Carleman linearisation method to non linear
partial differential equations and other kind of boundary conditions too.
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The SIR model, first introduced by Kermack and McKendrick [7] can be used to describe
any process in which some property is passed among a group of individuals. During the
process, we distinguish three classes: the first one (labeled by S) contains the ones which
has not acquired the property yet, the second (denoted by I) has those which have the
property and have the ability to pass it on to others, and the last one (class R) contains the
ones which had the property, but they cannot transmit it any more. Such processes include
epidemics (the process the model first was introduced for) or other biological phenomena
like a fire in a forest. The model mentioned above can be written in the following form,
in which a, b and c describe the infection rate, the rate of recovery and the effect of
vaccination, respectively.





dS(t)

dt
= −aS(t)I(t)− cS(t),

dI(t)

dt
= aS(t)I(t)− bI(t),

dR(t)

dt
= bI(t) + cS(t).

(1)

The original system of ordinary differential equations can be extended introducing a
spatial dependence, resulting in a system of partial integro-differential equations. Let us
suppose that an individual can only be affected by an ill person if they are close to each
other, and this effect also weakens as they get further. Because of this, we can introduce
a a non-negative function

G(x, y, r, θ) =

{
g1(r)g2(θ), if (x̄(r, θ), ȳ(r, θ)) ∈ Bδ (x, y) ,

0, otherwise,
(2)

that describes the effect of a single point (x, y) in a δ-radius neighborhood Bδ (x, y), and
set x̄(r, θ) = x+ r cos(θ) and ȳ(r, θ) = y+ r sin(θ). The function G(x, y, r, θ) demonstrates
how healthy individuals at points (x̄(r, θ), ȳ(r, θ)) are infected by the center point (x, y),
where r ∈ [0, δ] is the distance from the center and θ ∈ [0, 2π) is the angle. Here we assume
that the right-hand-side of (2) is separable. The effect of the point (x, y) depending on the
distance from the center is described by g1(r): a decreasing, non-negative function that is
zero for values r ≥ δ (since there is no effect outside Bδ (x, y)). The bounded non-negative
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function g2(θ) characterizes the part of the effect depending on the angle, i.e., the direction
in which the center is compared to point (x̄(r, θ), ȳ(r, θ)). Let us use the notation

GI(t, x, y) =

∫ δ

0

∫ 2π

0
g1(r)g2(θ)I(t, x̄, ȳ) r dθdr.

Then, our equation can be written in the form [6]




∂S(t, x, y)

∂t
= −S(t, x, y)GI(t, x, y)− cS(t, x, y),

∂I(t, x, y)

∂t
= S(t, x, y)GI(t, x, y)− bI(t, x, y),

∂R(t, x, y)

∂t
= bI(t, x, y) + cS(t, x, y).

(3)

In the talk we discussed several possible further extensions of this model, like the inclusion
of a constant delay α or the addition of diffusion of the individuals, see the following
systems.





∂S(t, x, y)

∂t
= −S(t, x, y)GI(t− α, x, y)− cS(t, x, y),

∂I(t, x, y)

∂t
= S(t, x, y)GI(t− α, x, y)− bI(t, x, y),

∂R(t, x, y)

∂t
= bI(t, x, y) + cS(t, x, y).

(4)





∂S(t, x, y)

∂t
= −S(t, x, y)GI(t, x, y)− cS(t, x, y) +DS∆S(t, x, y),

∂I(t, x, y)

∂t
= S(t, x, y)GI(t, x, y)− bI(t, x, y) +DI∆I(t, x, y),

∂R(t, x, y)

∂t
= bI(t, x, y) + cS(t, x, y) +DR∆R(t, x, y).

(5)

HereDS , DI andDR denote the diffusion parameters corresponding to the different species.
In the talk we showed several numerical models arising from these continuous systems.

We used different techniques to discretize our problem in space: first, we approximate
the integral term in the equations using either an Elhay-Kautsky [2, 5, 9] or a Gauss-
Legendre quartaure Q involving the transformation of the circle onto a square [8] with
positive coefficients wi,j . It turned out that for arbitrary nonlinear functions the latter
works better [10].

Then, we introduce a spatial mesh on our rectangular domain with stepsize h. In the
case of system (5) we also need to approximate the Laplace operator: this can be done by
using a central difference scheme

∆S(t, xk, yl) ≈ D2
0 (Sk,l(t)) =

=
Sk+1,l(t) + Sk−1,l(t)− 4Sk,l(t) + Sk,l+1(t) + Sk,l−1(t)

h2
.
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After all these, we get the following system of ordinary differential equations for system
(5) (the case (3) is when DS = DI = DR = 0):





dSk,l(t)

dt
= −Sk,l(t)Tk,l(t,Q(xk, yl))− cSk,l(t) +DSD2

0 (Sk,l(t)) ,

dIk,l(t)

dt
= Sk,l(t)Tk,l(t,Q(xk, yl))− bIk,l(t) +DID2

0 (Ik,l(t)) ,

dRk,l(t)

dt
= bIk,l(t) + cSk,l(t) +DRD2

0 (Rk,l(t)) ,

and in the case of (4):




dSk,l(t)

dt
= −Sk,l(t)Tk,l(t− α,Q(xk, yl))− cSk,l(t),

dIk,l(t)

dt
= Sk,l(t)Tk,l(t− α,Q(xk, yl))− bIk,l(t),

dRk,l(t)

dt
= bIk,l(t) + cSk,l(t),

where
Tk,l(t,Q(xk, yl)) :=

∑

(xi,j ,yi,j)∈Q(xk,yl)
wi,jg1(ri)g2(θj)Ĩ(t, xi,j , yi,j).

The reason for the tilde notation above the function I is that it might happen that the
point (xi,j , yi,j) ∈ Q(xk, yl) is not part of the spatial mesh: because of this, we use some
(positivity preserving) interpolation (e.g. bilinear or pchip [1, 3]).

Then we solve the above system of ordinary (or delayed) differential equations using a
Runge-Kutta method. The main aim of these numerical methods is not only to approxi-
mate the analytic solution in a sufficiently large order, but also to have such a numerical
scheme which (by using a sufficiently chosen step size) preserves the properties of the
original continuous system: the positivity of solutions, the conservation of the total mass
of the species and also the monotonicity properties of S and R in the cases of (3) and (4).

Theorem 1 Consider an explicit Runge-Kutta method with SSP coefficient C > 0 [4] and
applied to our time-dependent problem with non-negative initial data. Then the qualitative
properties mentioned above hold for the numerical solution if the corresponding condition
holds:

• For system (3) [10]

τ ≤ Cmin

{
min

1

T̂ + c
,
1

b

}
.

• For system (4) [11]

τ :=
α

m
≤ Cmin

{
min

1

T̂ + c
,
1

b

}
.

• For system (5):

τ ≤ Cmin

{
min

1

T̃ + c+ 4
h2
DS

,
1

b+ 4
h2
DI

}
.
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Here T̂ := H(M) and T̃ := H(M̃), where

M = max
(xk,yl)∈G

{S(0, xk, yl) + I(0, xk, yl) +R(0, xk, yl)} ,

M̃ =
∑

(xk,yl)∈G
S(0, xk, yl) + I(0, xk, yl),

and H is the operator coming from the spatial discertization of the integral term in a way
that Tn = H(In) (where matrices Tn and In contain the approximations of T (tn,Q(., .))
and I(tn, ., .)). Also, the SSP coefficient is 1 for the 2nd and 3rd order methods, and is 6
for the 4th order one.

Therefore, we could show that if we use a sufficiently small timestep, then the numerical
scheme preserves the required properties.
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Introduction

Industrial digitalization and continuously growing data assets raised the demand for ma-
chine learning methodologies in many different use cases. In order to demonstrate the
complexity of ML based solutions in manufacturing, three such use cases will be covered
briefly.

Alloy Wheel Pitting - Root Cause Analysis

In alloy wheel production, investigating manufacturing failures – like in all manufacturing
processes – is highly important task in order to reduce rework and waste ratios. The fac-
tory in question has a complex process of producing wheels in three main phases (forging,
machining and finishing) with more than 20 consecutive steps (e.g. press stations, pol-
ishing, ball burnishing etc.). In addition, there are different lines in production and more
different wheel types and sizes. The failure (called pitting) looks like a micro asteroid on
the surface of the wheel, and this problem had been present for a decade without knowing
the reason exactly. The challenge can be considered as a binary classification problem
(since the failure – not failure dichotomy), but after aggregating sensory and other data
for a daily time window this dichotomy transforms to a continuous probability measure
in case of the target variable. The daily aggregation of per-second data was necessary
because the identification per wheel is not available for the whole process thus, we can
investigate averaged daily operation measurements and machine setups and their corre-
lation to the average pitting rate. Analytical base tables had been constructed for the
different wheel types and production lines (in a daily aggregation level). The following
topics were covered by variables: materials (e.g. source of material), methods (e.g. change
in polishing recipe), measurements (e.g. polishing pressure), machines (e.g. maintenance
logs), environment (e.g. outside temperature), personnel (e.g. operator). Analytical base
tables helped engineers and data experts to talk through univariate correlations in order
to explore possible root causes and to focus on specific areas and come up with new ideas
for explanatory variables. Variable selection based on calculated information value. An
example is demonstrated on the left side of Figure 1, we can read that bigger polish-
ing pressure is riskier. After finalizing analytical base tables simple transparent machine
learning algorithm (3-layer decision tree) was applied to capture most important effects of
pitting failure and to collect threshold values for the right and wrong ranges on machine
setups and other factors as well. AUC values for the models are listed on the right side of
Figure 1.

Developments in Computer Science, Budapest, pages 183 - 186, 2021.

183



Figure 1: Demonstration of univariate insights (left) and model precisions (right)

After modelling a test production is defined in order to validate findings, the setup for the
machines changed based on the decision tree rules (modification of settings and recipes
towards the riskier range – but within predefined boundaries). The goal was to artificially
create wheels with pitting. The test production had to be canceled after 100 wheels be-
cause of the heavy pitting.

Pump failure prediction – Refinery predictive maintenance

In a stage of a refinery subprocess two cooling oil pumps help to cool down reactors,
one pump from the two must work, otherwise the system must be shut down. These
pumps had leakages on the sealings more frequently than expected. Several years of sensor
tag and other data were available: continuous measurement data regarding to the pumps,
measurement data about the reactors and other key stations of the process, maintenance
logs, quality measurements of input material. The main task was to develop a machine
learning model that can be used to predict next failure 20 days in advance. At the be-
ginning we focused on sensor tags directly from pumps (vibration, temperature, etc.), but
because of the alternating usage of the two pumps this data could not be used, namely
not enough data were produced prior to failures. Besides this, extensive exploratory anal-
ysis suggested temporal changes on system level over time thus system level sensor tags
had to be analyzed deeper . There was no failure for a year, therefore, a model which
separates this period from the years with failures could reveal process parameters which
were responsible for failures. Random Forest classifier was fitted to find the tags which
separate this year from other periods. After finding important features K-Means cluster-
ing algorithm was used to separate days with sensor tags proven to be important in the
previous Random Forest model. This way 3 periods could be defined with different system
level environment and different failure frequencies. Finally, a random forest regressor was
fitted on system level sensor tags in order to predict operating time between failures (this
was our target variable), thus operating time until failure could be calculated (per pump).
Explanatory variables was calculated on an hourly level with 24 hour sliding window (for
all system level sensor tags mean, minimum and maximum were calculated). Next figure
shows the prediction of the model ins a simulation, the model is recalibrated after every
failure. Failure alert is triggered when predicted operating time until failure is below 20

Szabolcs Biró, Szilárd Varró
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days. Blue line shows the operating time between failures, which reflects to the status of
the system, red line shows operating time since last failure (calculated based on factual
flow on pumps). The prediction is a subtraction of these previous two quantities. Green
line shows the factual values, it demonstrates that the model had a high precision after
simulation (accuracy above 90%).

Figure 2: Predictions of pump failure

AI driven 3D aerodynamics correction model

In aerodynamics the calculation of the force distribution on a three-dimensional surface is
computationally very intensive, it takes days of calculation for a given geometrical and en-
vironmental setup. In practice the calculations are made by using simplified model which
neglects several important effects of the real flow experienced in nature, however for many
engineering applications this simplified representation has all of the properties that are
important from the engineering point of view. The model simplification causes inaccu-
rate results, which leads to inefficiencies in the real application e.g. greater resistance,
less lift force, worse rotor efficiency, worse maneuverability, worse flying safety. In our
R&D project we moved one step further from a simplified two-dimensional wing model
to a machine learning model which is able to make corrected predictions to achieve more
accurate three-dimensional results. The process flow from CAD exchange format to pre-
diction is fully automatized, lacks complex three-dimensional analytical calculations, runs
in a few seconds and the accuracy is like the slower analytical solutions. The basic geo-
metrical properties are extracted from STEP CAD exchange format. To describe complex
geometries with a few parameters, we used Bézier and B-spline curves. There are different
neutral files available in CAD software. Some of the neutral files are IGES, STEP, DXF,

Machine Learning Use Cases in Manufacturing

185



STL files etc. STEP and IGES are most popular. STEP is intended for product data ex-
change, whereas IGES is for geometry data exchange. The description of product data for
mechanical parts has been standardized by ISO10303 and different protocols are available
in STEP. The STEP file is given as input to the developed program. The developed fea-
ture recognition program starts searching the STEP file with a string CLOSED SHELL
and it ends at a string CARTESIAN POINT. In between various strings such as AD-
VANCED FACE, FACE OUTER BOUND etc. are searched in a hierarchal manner. The
Vortex lattice method, (VLM), is a numerical method used in computational fluid dynam-
ics. VLM models an aircraft surface into infinite number of vortices to calculate lift curve
slope, induced drag and force distribution. The VLM models the lifting surfaces, such as
a wing, of an aircraft as an infinitely thin sheet of discrete vortices to compute lift and in-
duced drag. We used 2D VLM results, geometrical parameters and operational conditions
as model input and 3D VLM analytical results as model output/target. Our model used for
predictions was a simple feedforward neural network with 2 fully connected hidden layers.
The difficulty of the project was not the modeling, rather the data extraction, preparation
and transformation. We were able to reproduce the results of the analytical calculations
with acceptable accuracy by a relatively simple AI model. The analytical calculations ran
several weeks for a few thousand use cases, the AI model was able to make the predictions
in less than a minute after training (the training took a few minutes as well).

Figure 3: Model accuracy (X-axis demonstrates the position of the wing, Y-axis shows the
force while green dots shows factual values, red dots shows prediction)
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Abstract

Diacritics restoration became a ubiquitous task in the Latin-alphabet-based English-
dominated Internet language environment. In this article, we describe a small footprint
1D convolution-based solution, even running in a web browser, which surpassed the
performance of similarly sized models in the case of the Hungarian language.

1 Introduction

In many languages characters are often derived from a base alphabet using diacritical
marks. The goal of diacritics restoration is to restore diacritical marks given an input text
without the proper marks. Diacritics restoration is a practical task on the internet, where
the fact that computers were initially built with the base Latin alphabet in mind, still
shows.

This task is typically modeled as a sequence labeling problem. We present a language-
independent method for automatic diacritic restoration using a neural architecture based
on 1D convolutions, the so called Acausal Temporal Convolutional Neural Networks (A-
TCNs). Other approaches include BiLSTM based solutions [7]. Models based on A-TCN
have a comparable performance to BiLSTM-s [2].

We mainly focus on the Hungarian language, where the characters which can receive
a diacritic marks are exactly the vowels (e.g. u 7→ {u,ú,ü,ű}). For Hungarian the current
state of the art is reported by Laki et al. [6] and is achieved by neural machine translation.
Our main contribution is a trained model, which runs locally in the browser, allowing
client-side inference. We compared our model with Hunaccent [1], since both models have
a size of around 10MB. Our approach outperformed Hunaccent by a large margin.

2 Approach

In our research the diacritics restoration problem was modeled as a sequence to sequence
task on characters. To solve this seq2seq problem we considered Temporal Convolutional
Neural Networks (TCNs). TCNs are a generic family of models, notable examples include
WaveNet [12]. Our specific choice is a 1D fully convolutional network from [3], where the
convolutions are causal, they convolve output at time t with elements from time t − 1
and earlier. To increase the effective size of the convolutional window, the network is built
with convolutions with dilation factors [13] exponentially increasing by the depth of the
network (Figure 1).
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Figure 1: TCN architecture (kernel size: 3, dilation factors: 1,3,9). Red dashed: without
dilation.

TCNs also have residual connections [5] . A residual block contains a series of transfor-
mations, the result of which are then added to the input. The transformation consists of
a dilated convolution, followed by a normalization layer, activation function, and dropout
[11]. This is repeated b times (typically b = 2).

TCNs work well for applications where information flow from the future is not permit-
ted. For diacritics restoration it is essential to incorporate future context as well as past
context. In order to do this, we have to slightly modify the base TCN architecture as seen
in Figure 2. These acausally modified TCNs are called A-TCNs [2].

Figure 2: A-TCN architecture (kernel size: 3, dilation factors: 1,3,9).

The problem of diacritics restoration makes it possible to utilize the self-supervised
training paradigm. The grammatically correct sentences from the target language provide
the annotated data, we just have to remove the diacritical marks to generate the input for
the task.

We also considered the use-case when not all of the diacritical marks are missing.
Instead of hard copying the characters with diacritical marks at inference, we decided to
provide the model training examples where not all of the marks are removed. The used
augmentation method is similar to BERT’s MLM training technique [4]. In each epoch we
removed a different random 80% of the diacritical marks.

3 Experimental Setup

For training we used a subset of the Hungarian Webcorpus 2.0 [8], a large collection of
Hungarian texts from the Common Crawl and the Hungarian Wikipedia. We trained our
models on 119,660 documents, overall containing 363 million characters. The validation
dataset contained 14,958 documents, overall 45 million characters long. The texts were
randomly sampled from the ”2019” part of the Common Crawl subcorpus, before train-
dev-test cut.
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The details of the architecture and the hyperparameters of the final model are the
following. The character embedding vectors are of size 16. After the embedding the vec-
tors are upsampled to dimension 176, which is the channel size. Zero padding is used to
ensure that the output is the same length as the input. The network contains 4 residual
block layers with dilation factors of 1,2,4, and 8, respectively. Each block contains 2 con-
volutional layers, each followed by batch normalization, ReLU, and spatial dropout layers,
respectively. The convolutions have a kernel size of 5. The dropout rate is set to 0.2.

4 Results

Our model can be converted to ONNX (Open Neural Network Exchange), a cross-platform
neural network format. ONNX.js is a JavaScript library, which can run models in ONNX
format, which makes it possible to run our model in the browser. The demo of our model
is available at: https://web.cs.elte.hu/∼csbalint/diacritics/demo.html.

Converting to ONNX.js is not trivial. For example LSTM models are not supported,
and even 1D convolutions had to be simulated with 2D convolutions. Another difficulty
is that the model allows arbitrary input lengths, but in ONNX.js the first inference fixes
the input sequence length. The solution is to dynamically reload the model. If the input
is longer than the current limit, the model is reloaded with double length.

For baseline we chose Hunaccent [1], a decision tree based diacritics restorator, because
it shares our goal to implement a small footprint restorator. Moreover, our solution can
be run locally in a browser. To ensure a fair comparison, we set up our model to have a
size similar to the 12.1 MB of the trained model of Hunaccent. The raw ONNX file of our
trained model is 9.5 MB. Our demo HTML file is 12.72 MB. The HTML file contains the
ONNX file as a Base64 encoded string.

Compared to the baseline, our model achieved significantly better results in all of the
metrics we considered. Character accuracy measures the ratio of the correct characters in
the output. Important character accuracy is measured by characters for which diacritical
marks are applicable. In the case of the Hungarian language, these characters are the
vowels. Crude word accuracy is measured by the ratio of the correct words in the output,
where the words are defined in the simplest way by splitting the text along spaces.

Character Important character Crude word

hunaccent 98.39 95.16 89.25
A-TCN 99.67 99.01 97.66

Table 1: Accuracy comparison between the baseline and our model
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Abstract

Medical image recognition, e.g. that of histopathological images, provides unique
challenges compared to more traditional computer vision tasks. One such problem is
the scarcity of properly annotated, publicly available data. One frequent solution to
insufficient data size is the use of transfer learning, where the network is pre-trained
on a different, larger dataset from a similar domain, so it learns to extract low-level
features from a wider array of data points.

Different variants of a ResNet model have been tested on a dataset of 24 000 nuclei
sorted into seven different classes. The goal is to try to see what level of accuracy the
model is capable of with this task, while trying out different practices used in standard
image classification, like data augmentation and the use of weights pre-trained on
ImageNet.

1 Dataset

The CoNSeP – ‘colorectal nuclear segmentation and phenotypes’ – dataset introduced in
[3] is a dataset consisting of 41 images extracted from whole slide images that were taken
from colorectal adenocarcinoma patients, with haematoxylin and eosin staining technology,
at 40× magnification. Each image has a size of 1000 × 1000 pixels and is stored in PNG
format. The images come from a total of 16 patients, and each contains at least a few
hundred, and, in some cases, up to a thousand nuclei.

Figure 1: An example from the CoNSeP dataset, with the nuclei marked on the right [3]

Each nucleus is annotated according to a consensus of two expert pathologists in a
pixel-wise manner. The nuclei had also been divided into seven classes: malignant/dysplastic
epithelial, normal epithelial, fibroblast, inflammatory, muscle, endothelial, or miscella-
neous. Each nucleus is labelled as one of the above classes, and each belongs only to one
class, based on which type of cell it originates from.
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The CoNSeP dataset in itself is not fit for classification, since each of its entries contains
nuclei of multiple classes. Therefore a derived dataset needed to be made for classification.
For this, each nucleus was extracted individually. A best-fitting square bounding box, with
sides parallel to the horizontal and vertical axes, was placed on each nucleus, and then two
pixels were added to each side. The obtained square images were then resized to 32× 32
pixels, with the few below 10 × 10 pixels being discarded. The 32 × 32 size was chosen
because that represents a median of the original size of the nuclei.

endothelial muscle fibroblast malignant

epithelial

normal

epithelial

inflammatory miscellaneous

Figure 2: An example of each of the seven classes in the derived dataset

2 Experiments

The data was preprocessed with an RGB to BGR conversion, and the mean intensity of
each channel of each image shifted to match that of the ImageNet dataset [2]. During
training, images were padded with 4 black pixels on each side, and then a 32× 32 sample
was randomly cropped from the padded image or its vertical flip, and the resulting crop
was then rotated with either 0◦, 90◦, 180◦, or 270◦. This augmentation technique is similar
to that of [4].

One question that arises in any image classification task is how to measure the perfor-
mance of the model. The usual practice is that the model is only trained on a portion of the
dataset – usually around 75-80% –, and the rest is used as validation and test data. This is
made complicated by an inhomogeneous dataset such as this one: nuclei coming from the
same slides and the same patients will be much more similar to each other than ones from
different slides and patients. To account for this discrepancy, two different train-validation
splits have been applied: either 20% of data was split off for validation randomly, or all
nuclei coming from 5 randomly selected images were used as validation.

3 Results

A ResNet-50 model [4] was used for experiments, with SGD optimisation. The models and
experiments have all been implemented using the Keras API. [1] As anticipated, results
largely differed depending on the validation datasets. Figure 3 shows the two extremes in
validation accuracy, when training and validating on different subsets of the data. Both
validation sets consist of nuclei coming from five different images, the difference lies in the
choice of those five. With a particularly unfortunate choice, the model’s performance on
the validation set fails to improve after the first few epochs, while another split produces
much more promising results.

All experiments show that with the usual 10−1 or 10−2 learning rates, the model
fails to converge, so a starting learning rate of 10−3 was used. Transfer learning and
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Figure 3: Comparing validation accuracy measured with two different train-validation
splits

5-out validation Random split validation

Method Split 1 Split 2 Split 3 Split 4 Split 5 Split 6

Randomly initialised weights

Without dropout 41.93% 68.44% 53.67% 65.27% 70.23% 67.18%

Pre-trained weights

Without dropout 43.34% 72.81% 53.78% 69.42% 70.04% 68.93%

With dropout 49.48% 69.54% 54.95% 69.36% 71.48% 69.88%

Table 1: Validation accuracies on different validation sets

fine tuning with weights pre-trained on ImageNet have also shown to improve accuracy,
compared to randomly initialised weights. Figure 4 illustrates the difference between the
two initialisation techniques: the pre-trained model reaches higher accuracy faster than its
counterpart.

Figure 4: Comparison of the training accuracies of models with pre-trained and randomly
initialised weights

Using dropout [5] before the classification layer of the network also seems to improve
validation accuracy by anywhere between 1% and 5%, depending on the validation set.
Table 1 compares the validation accuracy of different methods, with the model trained
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and validated on different splits. Splits 1–3 validate on nuclei coming from 5 images, and
train on the rest, while 4–6 splits the dataset into train and validation data randomly.

As seen, one of the main difficulties comes from the substantially differing accuracies
measured on different train-validation splits. While one of the main sources of these dif-
ferences is the fact that cells coming from the same person will be more similar to each
other, another cause might be that when the pictures were taken, different amounts of
haematoxylin and eosin were used for different samples, and the model learned faulty as-
sociations as a consequence of that. In the future, colour augmentation can be used to try
to mitigate this effect.

Medical image recognition has its own challenges and tricks. Image classification of
this sort of data proves to be a more difficult test than a similarly sized, more traditional
image dataset. We have provided insight into an ongoing project, shown some of its current
shortcomings, and some possible solutions to those. Our hope is that by obtaining more
training data, by carefully calibrating preprocessing, and perhaps by choosing models more
fit for this task, the initial results here can be meaningfully improved upon.
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Abstract

While solving computer vision problems with deep learning, transfer learning is
often used. The pretraining is usually done on ImageNet or another large dataset of
natural images, but it is unclear how well features learned in this setting transfer to
images from a completely different domain: medical images. First we confirmed that
pretraining always has a positive effect on validation accuracy. We then found that,
surprisingly, the effect of pretraining does not increase as we decrease the size of the
training dataset. We show that pretraining helps less below a threshold in the low
data regime and the beneficial effects of pretraining do not diminish even with tens of
thousands of training images.

1 Introduction

In deep learning computer vision problems, Convolutional Neural Networks (CNNs) are
most commonly used. Pretraining these CNN models on a large dataset often speeds up
convergence during training, and models also tend to converge to better local minima.
The pretraining is usually done on ImageNet, however, in the literature, there is conflict-
ing evidence on how transferable these weights are to semantically different datasets like
medical images. Medical images are generally grayscale, while natural images are colored
and models usually have to differentiate between only about 2 to 20 categories as opposed
to ImageNet’s 1000. Medical images also tend to have less interclass diversity. Furthermore
important parts of medical images can often take up a tiny area of the image, so attention
to detail or texture may be more important. Despite these differences in image distribu-
tion there is evidence [4] that pretraining can boost performance. We confirm this with
several commonly used models with different architectures. We then investigate how these
models perform with different amounts of training data, specifically looking to confirm
the benefits of pretraining in the low data regime, as medical image datasets often only
contain a few hundred to a few thousand images.

2 Experimental setup

For our experiments we used the publicly available CheXpert [3] dataset, which consists
of 224,316 chest radiographs with up to 14 labels each. There are images in both frontal
and lateral views. We only used frontal images, because frontal and lateral images differ
so much that if we used both, the models would essentially have to learn 2 different
tasks simultaneously; and there are more frontal images. The task we trained on was to
learn only one of the labels, namely Lung Opacity. We chose lung opacity, because it
should be detectable visually from chest x-rays and because there were a lot of labels for

Developments in Computer Science, Budapest, pages 195 - 198, 2021.

195



it. There were 94,211 positively and 5,051 negatively labeled images, along with 16,974
images of healthy patients. Combining normal images with the images negative for lung
opacity we got 20,170 images. To make a balanced dataset we used 19,000 negative +
19,000 positive = 38,000 images for learning, while reserving 2,000 images for validation.

When using training sets with sizes less than 38,000, we repeated the training set to
make training epochs (somewhat) comparable for vastly different training set sizes. Since
we shuffled the datasets before each epoch, this may mean that each individual image
can appear more than once in a batch. Extending epochs this way was mainly to facilitate
consistent early stopping and for the ability to meaningfully compare epochs between runs.

Sabottke and Spiele [5] found that for chest radiographs, if the image resolution is
less than 224 by 224, then the information loss due to compression is significant, however
above 256 by 256 pixels, accuracy seems to plateau. We wanted to make sure our image
resolution was not too far from the resolution of the ImageNet images the models were
originally trained on (224 X 224 X 3). For these reasons we chose an image size of (256
X 256 X 3). Chest radiograph images are grayscale, but in order to use the pretrained
weights, we duplicated the single color channel. Batch size was chosen to be 64.

We used Coolmomentum [1] optimizer with ρ0 = 0.99, α = 0.99997 and a starting
learning rate of 0.0001. We decreased the learning rate exponentially by a total factor of
(at most) 100 over a maximum of 100 epochs, using early stopping when training accuracy
did not improve by at least 1% for 5 consecutive epochs. This was only to automatically
stop training after model convergence, as this time varied based on the size of the training
set and pretraining (or the lack thereof). This meant that for the larger training sets
training took longer and also reached a smaller learning rate. Because of this, overfitting
was more prevalent in experiments with larger training sizes. We recorded the validation
accuracy after every epoch, and in Section 3, we report the values we would have gotten
stopping at the highest epoch validation accuracy.

3 Experiments

We were interested in how two hyperparameters impacted the transferability of the weights:
model architecture and training set size. For weight transfer, we used the fine tuning ap-
proach. We removed the dense top layers of each of the models and added a new linear
classifier with a single output neuron. We always initialized the classification layer ran-
domly while initializing the rest of the model either randomly, or from the ImageNet
pretrained weights. We tried several well-known models from different stages of the evo-
lution of CNNs, but with parameter counts in the same order of magnitude: VGG16 [6],
ResNet50 [2], and InceptionV3 [7]. Ke et al. [4] found that model size does not impact
performance as significantly as model family, this is why we only tried one model per
model family.

According to industry wisdom, transfer learning is the most useful when the training
size is too small to train from scratch. We wanted to test this theory by limiting training
to only a small subset of the training set of sizes 200, 2000, 8000, and 38000. We ran
each setup 10 times to reduce the effect of randomness from selecting a random subset of
images and other inherent sources of randomness that occur during training.

For augmentation we used horizontal flipping for all the experiments. For the training
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(a) VGG16 (b) ResNet50 (c) InceptionV3

Figure 1: Validation accuracy results for the different models. The orange boxes correspond
to experiments with ImageNet initialization, while blue boxes correspond to experiments
with random initialization. All experiments were repeated a total of 10 times.

Figure 2: Boost in average validation accuracy from pretraining

set size 200 experiments, we also changed the brightness by up to 0.2. For the size 2000
experiments, we used random rotation by at most 0.1π.

Results are illustrated in figure1, where each plot shows results from a single model
and each box corresponds to a set of 10 experiments with the same setup with training
set size and initialization varying between them.

4 Conclusion

Our experiments show that, unsurprisingly, models trained on bigger datasets always
performed better, but interestingly the oldest VGG16 model slightly outperformed both
ResNet50 and InceptionV3, suggesting that newer model architectures may have started
overfitting to ImageNet.

Surprisingly we found that transfer learning may not be the most useful in the low
data regime. Despite still being able to somewhat learn the task, the difference between
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pretrained and random weights was clearly the least significant in the case of the smallest
training dataset. On the other hand, pretraining seems to be just as important with tens
of thousands of training images, suggesting that medical image tasks may need at least
hundreds of thousands of images before the importance of pretraining might fall off. Overall
we can conclude that pretrained weights are always worth using, when they are available,
but with a very small training set (under about 1000 images) custom model architectures
may be more beneficial.
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Our objects of interest are generative autoencoders, that is, autoencoders where the
decoder can be used as a generator when samples from some prior distribution are fed to it.
More specifically, we are interested in the Wasserstein Autoencoder (WAE) class of deep
learning models [1]. Tolstikhin et al’s original formulation states that if the pushforward
of the true data distribution is equal to the prior, then the Wasserstein distance between
the true data distribution and the generated distribution is equal to the reconstruction
error. Thus, by applying Lagrangian relaxation, the loss function for these models is the
reconstruction error plus a penalty term for matching the aggregated posterior to the prior.
This penalty term can be seen as a statistical test verifying that the pushforward is indeed
close to the prior.

In all incarnations of this idea that we are aware of, such as Adversarial Autoencoders [2],
WAE-MMD [1], MMD nets [3], or Sinkhorn Autoencoders [4], the input for this statistical
test is the latent image of the minibatch (latent minibatch for short). However, as it is
already hinted by experiments published by Rubinstein et al. [5], the size of the minibatch
may strongly affect the performance of the model.

We argue that in the WAE class of models, the minibatch size (which is typically in
the range of 50-200), is not large enough compared to the dimension of the latent space,
which means that the statistical test is too weak to guarantee a good match between the
pushforward and the prior distribution. We propose an optimal transport-based generative
model from the Wasserstein Autoencoder family of models, with the following innovative
property: the optimization of the latent point positions takes place over the full training
dataset rather than over a minibatch. Our baseline model is the Sinkhorn Autoencoder
[4], which operates on the latent embedding of the mini-batch. We compare our Global
Sinkhorn Autoencoder model with the “local” Sinkhorn Autoencoder baseline on natural
and synthetic datasets, on several evaluation metrics.

Detailed description of the Global-SAE algorithm. Our main proposal for new
methods capable to work with point cloud sizes strongly exceeding the ones encountered in
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Algorithm 1 Global Sinkhorn Autoencoder (Global-SAE)

Input: Dataset x = {xi}ni=1, prior distribution PZ ,
encoder weights Ψ, decoder weights Φ, learning rate µ, traning iters iter, minibatch
size M
parameters for the Sinkhorn algorithm: ε ∈ R, L ∈ N, c = ‖.‖22, sinkhorn weight λ

Output: Trained model with encoder weights Ψ, decoder weights Φ
1: for i = 1..iters do
2: z = {zi}ni=1 ∼ PZ {Sample target point set from PZ — global data}
3: ẑ = {ẑi}ni=1 ← QΨ(x) {Encoded image of the entire dataset x — global data}
4: x̃ = {xi}i∈I where I ⊆ {1, 2, ..., n} random subset, |I| = M {Minibatch sample from

x}
5: x̃′ ← GΦ(QΨ(x̃))
6: D ← 1

M ‖x̃− x̃′‖22 {Calculate reconstruction loss for minibatch}
7: S = Sc,ε,L(ẑ, z) {Calculate Sinkhorn loss for global point clouds ẑ and z — global

data}
8: (Ψ,Φ)← (Ψ,Φ)− µ · ∇(Ψ,Φ)(D + λ · S) {Update model parameters}
9: end for

the minibatch regime is summarized in Algorithm 1, in which we proceed as follows. In
lines 2-3 we resample the target latent point cloud, and calculate the latent images ẑ of
the dataset x. Note, that instead of considering data and target samples of size M of a
minibatch, we examine the complete dataset x = {xi}ni=1 and a correspondingly sized target
set z = {zi}ni=1 sampled from the prior distribution PZ , thus we operate in the global scope
of the dataset. In lines 4-6 we calculate the reconstruction loss for a minibatch. (For this
regular autoencoder loss term we remain with the minibatch scope.) In line 7 we calculate
the error terms resulting from the optimal transport cost between ẑ and z. Then in line 8
we update the model parameters by taking a gradient step with the above global optimal
transport loss function and also with the reconstruction error.

Calculate in the global scope, but backpropagate only on a minibatch. In the
Global-SAE algorithm all latent positions are calculated by the encoder in each iteration, thus
the gradient signal coming from the Sinkhorn loss can be backpropagated for all datapoints
to the encoder weights. In contrast to this, we introduce a new variant: Minibatch-Global-
SAE, which takes the latent positions from a ”cache” for all points except for the current
minibatch. This means that for this variant, the gradient signal coming from the Sinkhorn
loss can only propatage to the encoder for the elements of the current minibatch, and
the gradient signal is ”thrown away” for all datapoints outside the minibatch. The only
difference between the two algorithms is that in case of Minibatch-Global-SAE we take
the gradient on the minibatch, while in Global-SAE we take the gradient on the entire
dataset. The runtime and the memory requirements for the decoder forward-backward pass
and the Sinkhorn loss calculation are identical between the two variants. The significant
differences between the resource requirements of the two variants lie in the way encoder
gradient updates are treated. The Full Global variant requires a forward-backward pass of
the encoder on the full dataset for each minibatch calculation.

The MNIST dataset can be seen as a balanced mixture of 10 disjoint image datasets,
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one for each digit. Thus it is reasonable to consider a 10-mixture of Gaussians as the latent
prior distribution for such a dataset, as was already done by [2]. (Setting the pairwise
KL-divergences of the Gaussians to a high value, reflecting the fact that the class ambiguity
of the data distribution is small.) In this setup, a goal we might set for our encoder is that
the pushforward of the data distribution of a single image class should be close to one of
the Gaussians. Conversely, the decoder pushforward of a single Gaussian should be close to
the data distribution of a single image class.

To obtain a detailed view on the quality of the models, we examine five different
quantitative evaluation metrics, each of which shed light from a different viewpoint on the
quality of the learned model. Besides reporting the standard test reconstruction loss, and
the Sinkhorn loss on the entire test set (which we call global OT loss for brevity), we also
introduce three metrics that measure the quality of the latent space formed by the trained
model.

Local clustering To measure how well the same labeled points coalesce we utilize the
local clustering metric which is a standard evaluation metric in semisupervised models.
Here, we call an encoded point good, if the 10 nearest encoded points to it in the latent
space have the same label as this point. The ratio of the good points in the test set is what
we call local clustering.

Cluster matching. One might wish that working with such a prior (the ”flower” prior),
as there are 10 labels, all encoded images with the same label should belong to the same
petal. We are interested in how much the actual embedding approximates this ideal. This
consideration leads to a metric we call cluster matching. Informally, the metric is the
classification performance of the clustering algorithm assigning the points to petals by
maximum likelihood, assuming that the unknown assignment between clusters and labels is
chosen optimally. First, we split the plane by 5 lines passing through the origin, such that
each angle between adjacent lines is the same, and for each angular domain, the angular
bisector passes through the mean of one of the Gaussian distribution in the mixture. We
partition the plane into 10 domains, and we can assign each encoded point to the petal
which has its mean in that specific domain. Then we create a complete bipartite graph
where the two sets of nodes represent the labels and the petals respectively, and the weight
of the edge between the ith petal and jth label is equal to the number of test points assigned
to the ith petal and has label j. The value cluster matching is the weight of the maximal
weight perfect matching divided by the size of the test set.

Covered area. As the latent space is two dimensional, we can check visually how well
the models are able to match the encoded points to the prior point cloud. In addition we
worked out a measure which we call covered area which checks how well the encoded points
are matched to the prior distribution.

For Gaussian priors, let T be a transformation that transforms the prior to the uniform
distribution on the unit square in the plane. We transform each encoded point by T , thus
each encoded point is transformed to the unit square. We create a very dense grid on the
square, look at the small neighborhood of the transformed encoded points and compute
how many little squares in the grid intersect with the neighborhoods. The ratio of such
squares to the number of squares in the grid is what we call covered area.

For Gaussian mixtures, we assign each encoded point to one of the mixture components

Global Sinkhorn Autoencoder - Optimal transport on the latent representation of the
full dataset

201



by maximal likelihood. Assuming large divergence between our mixture components, every
such “petal” is a Gaussian distribution with good approximation, and we can calculate the
covered area for each of the petals separately, then take the average of these values.
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Figure 1: The encoded test set in the latent space, using an MLP net. The points match
the prior better and they have a more orderly arrangement in the global versions.

MLP Local Minibatch global Full global

Sinkhorn loss ↓ 0.018 ±0.28e−2 0.013 ±0.33e−2 0.014 ±0.38e−2

Reconstruction ↓ 0.036 ±0.19e−3 0.034 ±0.33e−3 0.034 ±0.1e−3

Local clustering ↑ 0.456 ±0.012 0.505 ±0.019 0.516 ±0.017

Cluster matching ↑ 0.55 ±0.067 0.64 ±0.033 0.64 ±0.01

Covered area ↑ 0.83 ±0.82e−2 0.89 ±0.007 0.87 ±0.008

Table 1: Results for the MLP net after 50 epochs. Averages of 5 runs with different random
seeds. An arrow indicates if lower (↓) or higher (↑) is better.

As our experiments demonstrate, our global models consistently improve on the local
baselines for complex priors in low latent dimensions.
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Abstract

In this paper we are focusing on the modelling of Motor Own Damage insurances’
cancellation by client at annual. While in the insurance company Generalized Linear
Model (GLM) is used mainly for modelling purposes, it lacks the ability to effectively
identify non-linear interactions. To increase the predictiveness of our models, we exper-
imented with different hyper-parameters for Random Forest and Gradient Boosting
Regression, used their results both directly as the expected value for the insurance
policy cancellation and using a threshold to decide will the client actually cancel or
not the policy at anniversary. We have analysed the obsolescence of data, to improve
our practice, which using fixed number of previous years to build the training set. For
pricing, the most important to predict sum of actual lapse on sub-portfolios which are
part of either the tariff premium or the actual risk (so called technical premium) or
both, thus we concentrated on the global actual vs expected value, and analysed them
on different sub-portfolio using an interactive excel one-way analysis tool. This brought
good results, thus we also started researching good models to predict policy-level lapse
probability, which could support our ongoing product modernization campaign called
to life partially by the covid-situation. Finding a technique to predict for individual
outcomes even in million rows database made necessary using more advanced machine
learning algorithms.

1 Introduction

In this paper we present results given during building a model to predict the probability
of policies of the actual MOD portfolio to be cancelled at anniversary by client. This is a
behavioural model which harder to explain with the available (mainly tariff-related thus
risk-explanator) parameters, as it depends clients’ discretionary decision and competitors’
agents’ and brokers’ activity, triggered by not necessary reasonable decisions. The ascer-
tainments below shows toward a machine learning method to predict cancellations better
than the current industry-used GLM methods.

2 Overview of data by heat maps

There was a tool introduced to get heat maps directly from the Oracle database (and
store it in Oracle tables in a BLOB as a 32 bit transparency supported windows bitmap).
This can produce an X-Y coordinate system (where either the X or the Y or both can be
numeric or categorical variable), and visualize two numeric value (like lapse ratio, and a so
called exposure which means the amount of data, where the lapse ratio comes from). This
2 value allows us the highlight the most important parts, and reduce the noise by fade
regions on the map where extreme ratios would come from tiny exposure and would jiggle
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Figure 1: Heat maps with native and blurred results by saturation and luminosity weight
visualisation, actually used weight-values

the map. The main value (like lapse ratio) could be the hue, going from red to either yellow
or green or blue. The weight (the exposure) used to be either the brightness (black is 0
exposure) or the saturation (gray is the zero exposure) or the transparency (completely
transparent is the zero exposure), either these two legend combined into a rectangle or
visualised separately (Figure 1).

Using lumiance (brightness) for weighting would direct one’s attention more likely to
the weighting than the value, therefore this is the less fortunate solution, as the weighting’s
primary function to hide noise. Using to high resolution for heat map chart would also
generate more noise and would make more difficult to catch the actual message of the
chart. Using lower resolution causes only a smaller amount of the possible value/weight
combination displayed actually which is also extracted with this tool, like actual picture
down-sampled for better result in a small pdf embedded picture. Using transparency for
weighting is beneficial when an actual geographical map is used as background, is this case
-thanks to the precise geocoding roof – top addresses – we can produce virtually perfect
resolutions for a whole country-sized map (Figure 2).

Figure 2: Arbitrary high resolution maps

3 Time Consistency

We have analysed the time consistency in the lapse modelling, as a single year used as a
training set and a single as the testing set. These results are summarised in Table 1.
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Table 1: Model’s AUC training on one year and testing on an other

Percentage here are AUCs, and the model was Random Forest [1] with 1,000 estimator
and with a maximal depth of 3. The scores output by the model used as expected values
for that policies. Note that with less optimal hyper-parameterized model these scores can
easily result negative numbers. For models like GLM [3], where averages of subsets of the
training set’s are being estimated there is a common overcome for this is to use a link
function (like logit function) to extend the [0, 1] interval to (−∞,+∞). One can observe
the weak performance of the model even when tested on the same year where the model
was trained. There is a still unexplained difference in the year of 2019, while in 2018
there was a new product launched which altered the nature of the portfolio’s MOD lapse,
resulting years before 2018 somewhat obsoleted. As one can expect, the higher distance in
time between the train and test set, the weaker explanation power observed. This raised
the question, how far would we go back in time to get data, where is the point where
further appends from the past would not improve the model. This depends on our goals:
to predict individual policies to lapse or renewal (where the AUC should be increased) or
would we like to make a portfolio sized prediction where average vs expected fits better.

Figure 3: Ideal number of years to train depends on AUC/Actual vs expected optimisation

We found that 2 or maximally 3 years were optimal for AUC optimalisation (which is
exactly the point where the new product launched), while for a portfolio-sized estimation
all the 6 tested previous years produced better explanations as they included to the test
set (Figure 3). Actual implementation of the AUC-like measure would beneficial for prod-
uct migration where old policy’s policyholder are each-by-each looked up by the policy’s
caregiver agent and the policyholder is offered to make a new contract with a modernised
new product. On the other hand, for pricing the ideal approach is Towers Watson Emblem
software’s point of view, where a whole sub-portfolio’s average is being estimated. This
allows us to map probabilities to entire hernial and the actual tariff multipliers will be
based on these measurement. That way, we have to optimise to that sub-portfolio’s actual
vs expected values. To monitor that result, we developed an excel tool, to show these
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values with fast clickable VBA supported charts (Figure 4).

Figure 4: Actual vs expected monitored against 115 rating factors already

4 Hyper-parameter optimisation

There is a running project to implement thresholds to substitute ML method’s scores
with 0/1 values and use this to estimate and analyse the results with confusion matrix,
sensitivity and accuracy – yet no better results are achieved. This could let us optimize the
hyper-parameterizing of the algorithms better. Hyper-parameter optimisation is a crucial
point of machine learning modelling, we measured actual vs expected lapse on arbitrary
selected parameters to implement modelling, and also generated some charts to recognise
different algorithms behavior on the actual MOD portfolio. In general, Gradient Boosting
Method [2] found to be more stable, which means less deviance is the test set, and reliable
explanation of the grand mean on the training set (Figure 5).

Figure 5: Optimisation of tree depth for Random Forest (blue) and GBM (red)
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Summary

In this talk, I discuss three different notions of ordinals in homotopy type theory and show
how they relate to each other. The first are extensional wellfounded orders, the second are
(a refined version of) Brouwer trees, and the third are Cantor normal forms.

This talk is based on recent joint work with Fredrik Nordvall Forsberg and Chuangjie
Xu [6].

Introduction

Ordinals generalise the natural numbers, with examples being 0, 27, ω, or ωω + 3. The
set of finite ordinals is just N, and ω is the smallest ordinal that is larger than all natural
numbers. Although ordinals can be infinite, decreasing sequences of ordinals are always
finite; in other words, every decreasing sequence of ordinals terminates, a property known
as wellfoundedness. This makes them suitable to show termination of processes or to justify
induction principles. The usual set-theoretic definitions of ordinals further are extensional,
i.e. if ordinals x and y are such that any z is smaller than x if and only if it is smaller
than y, then x and y are equal.

How can the concept of ordinal numbers be represented in constructive type theory?
If we consider a relation <: X → X → Prop, then wellfoundedness can, as first suggested
by Aczel [1], be formulated via an inductive predicate. More precisely, the predicate Acc :
X → Type is defined inductively by a single constructor

acc : (x : X)→ ((y : X)→ y < x→ Acc(y)→ Acc(x), (1)

and < is wellfounded if every element is accessible. Further, < is extensional if

(x y : X)→ (∀z.z < x↔ z < y)→ x = y. (2)

We consider three notions of ordinals:

1. Extensional Wellfounded Orders

Translating the classical set-theoretic definition directly into a constructive setting leads to
the following definition, as studied in the HoTT book [8, Chapter 10] and by Escardó [4]:
An ordinal is a type X together with a relation < : X → X → Prop which is transitive,
extensional, and wellfounded. We denote the type of all such ordinals by Ord. It is known
that Ord is an ordinal itself, where the relation is given by simulations [8].
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2. Brouwer Trees

In functional programming, Brouwer (ordinal) trees Brw are often defined with the con-
structors zero, successor and a supremum constructor sup : (N → Brw) → Brw. However,
it would maybe be more accurate to think of elements of this type as representatives
(or notations) for ordinals; for example, sup(0, 1, 2, 3, . . .) and sup(1, 2, 3, . . .) represent the
same ordinal, but are of course different as elements of Brw. In particular, Brw is not ex-
tensional. To repair this defect, we turn Brw into a quotient inductive-inductive type [2, 5]
such that Brw is defined simultaneously with its relation <. The relation < of this version
can then be shown to be extensional and wellfounded at the same time.

3. Cantor Normal Forms

In classical set theory, every ordinal α can be written in Cantor normal form, i.e. as

α = ωβ1 + ωβ2 + · · ·+ ωβn (β1 ≥ β2 ≥ · · · ≥ βn). (3)

If we consider binary unlabelled trees an write the node constructor node(a, b) as ωa + b,
then finite trees (with a condition corresponding to β1 ≥ β2 ≥ . . .) correspond to ordinals
below ε0 [3, 7]. They can, again, be equipped with an extensional and wellfounded relation.

Comparison

Although each of Ord, Brw, and Cnf classically corresponds to a certain subset of the class
of ordinal numbers, they behaved very differently in a constructive settings. Equality and
the relation < on Cnf are decidable, while for Ord, even deciding whether an ordinal is
zero already corresponds to the law of excluded middle. Brw sits in the middle: While
our version makes it possible to decide whether a Brouwer tree is finite, and equality for
finite ones is decidable, general equality is still undecidable. Moreover, a “more decidable”
version can be embedded into a “less decidable” one, in the following sense:

After defining the typical arithmetic operations for Brw, we have an obvious map
CtoB : Cnf → Brw, defined by 0 7→ 0 and ωa + b 7→ ωCtoB(a) + CtoB(b). This map is
injective and preserves and reflects both < and ≤. More importantly, it commutes with
+, ∗, and ωx. It is also worth noting that CtoB is bounded by ε0 which can be defined in
Brw but, of course, not in Cnf.

Using that our order on Brw is extensional and wellfounded, we have a second canonical
map BtoO : Brw → Ord, a 7→ Σ(y : Ord).y < a. This map is injective and preserves <
as well as ≤. It commutes with limits, but constructively not with successors. Assuming
the law of excluded middle, it is a simulation (i.e. we have Brw < Ord), but this is not
constructively provable. The map BtoO is bounded by Brw.

Full paper and formalisation

A full paper with all details is available on the arXiv as arxiv:2104.02549. We have
formalised most of the results in cubical Agda (although without satisfying the termination
checker in all cases), and this can be found at
https://bitbucket.org/nicolaikraus/constructive-ordinals-in-hott.
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1 Motivation

Type theory provides a very useful toolkit for creating and validating formalizations with
mathematical precision. By being an expressive alternative foundation for mathematics it
enables the formalization of constructive proofs through the connections to intuitionistic
logic given by the Brouwer–Heyting–Kolmogorov interpretation. After creating a formal-
ization by defining its types and their elements, one can express statements and theorems
in forms of new types, the instances of which can be thought of as proofs for them. This is
due to the so called ”propositions-as-types” paradigm, also known as the Curry–Howard
isomorphism. Its use cases include examples such as constructing algebraic descriptions of
programming languages [4] and proving the correctness of programs implemented in them.
Some of these procedures are already possible in currently available proof assistant sys-
tems (such as Agda [7][1]), but certain steps of them are rather cumbersome. They either
require plenty of manual work (due to the need of eliminating equalities using transports)
when utilizing certain constructions, such as quotient types, or on the other hand, if such
features (e.g. rewrite rules) are utilized that prevent the code from getting overly compli-
cated, important properties of type theory - such as canonicity and normalizations - are
lost.

This issue could be mitigated by creating a proof assistant based on Setoid Type
Theory [3][2], which has certain features that are missing from Martin-Löf Type Theory,
such as quotient types, functional extensionality and propositional extensionality, which
makes handling the previously mentioned problems much more convenient and elegant.
As the usual naming convention suggests, the interpretations of contexts and closed types
in the setoid model are setoids, which are formed by extending a set with a reflexive,
symmetric and transitive equivalence relation.

2 Requirements

In order to utilize Setoid Type Theory for such purposes, it is required that we first show
that it satisfies certain basic requirements, such as canonicity and decidable equality, which
is necessary for type checking. The proof that these conditions are met can be constructed
in several different ways, among which I have examined some methods, comparing their
advantages and disadvantages.
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3 Methods

Setoid Type Theory itself can be defined through multiple approaches, in the current
literature[3][2] there is no consistent description yet, which publications agree on. We are
looking for rules that are (in certain aspects) optimal for defining the basic framework,
on top of which proofs and implementations can be built. Such beneficial rules can be
indicated by and extracted from models, in which desired properties are convenient to
prove.

Canonicity can be proven directly using the method of logical predicates [5], which is a
more involved procedure, or indirectly through defining a setoid model based on another
model of type theory. The latter procedure is called setoidification, which is illustrated on
figure 1. In that case we can derive the properties of the syntax of Setoid Type Theory
from the properties of the original model if the mapping to the newly created model is
shown to be injective.

MLTTP − Syntax

SeTT − Syntax Setoidify(MLTTP − Syntax)

Interpretation

SetoidificationEvaluation

Setoid Type Theory

Martin-Löf Type Theory

Decidable Equality
Canonicity

Figure 1: Setoidification illustrated

Let the J K operation be the interpretation from the syntax of SeTT to the setoidified
MLTTP syntax. If the injectivity of this bracket function (JtK = Jt′K ⇒ t = t′) is proven,
the desired properties can be lifted to SeTT by evaluating to the underlying model.

• Decidability of equality
Decibility of equality means that either t = t′ or t 6= t′ holds for every t, t′. Through
evaluation, JtK = Jt′K is an equality in the base model. If we have decidable equality
there, we have two cases:

– JtK = Jt′K implies t = t′ by injectivity

– JtK 6= Jt′K implies t 6= t′ by contradiction
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• Canonicity
Canonicity means that every closed term can be equated to one of potentially several
specific forms defined by its type, which are usually considered as final results of
computations. For example, type Bool has two canonical forms in the base model:

– JtK = MLTTP −Syntax.false implies t = SeTT −Syntax.false by injectivity

– JtK = MLTTP − Syntax.true implies t = SeTT − Syntax.true by injectivity

The proof of this injectivity can also be simplified if the definition of the setoidification
conforms to certain constraints given by the notion of ”interpretation” [6], more or less
meaning that the carrier of the setoids stays the same as the set in the base model, upon
which the construction is built.

4 Contribution

We described several different models with homogeneous and heterogeneous equalities,
symmetry and transitivity, bidirectional coercion as well as other differing aspects and
observed their properties in order to determine a convenient set of rules to be used. Some of
the models were formally implemented in the Agda proof assistant as well and typechecked
by computer.

We concluded that a model with bidirectional coercion instead of symmetry and tran-
sitivity is more generic, but requires a higher dimensional reasoning, which makes it less
straightforward to work with. Homogeneous equality on the other hand would reduce the
need to express equalities of contexts and simplify the model, but in order to keep the
same level of expressive power, new rules (at least weak fibrancy) need to be introduced,
while the asymmetrical nature of coercion - that arises at for example the definition of the
sigma type - led to extra complications.

One other choice we made was having a separate family of types and terms for propo-
sitions instead of encoding them into universe levels, since this is a more generic approach,
as this way it can exist in the presence of universes and their absence as well.

We created two setoidification constructions, for one of them the injectivity proof is
already in progress.

5 Further work

Based on our results and experiences so far the model with the following properties seems
to have the best in terms of usability and prospective simplicity of proofs:

• Heterogeneous equality

• Symmetry and transitivity

• Separate family of propositional types and terms

We plan to compose a canonicity proof for a setoidification model through the injec-
tivity of the construction for such a minimal Setoid Type Theory extended with a few
basic type formers, such as Σ, Π and Bool with large eliminator.
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István Donkó, Ambrus Kaposi

216



A model of type theory supporting quotient
inductive-inductive types1

Ambrus Kaposi and Zongpu Xie
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Quotient inductive-inductive types

Natural numbers, lists, binary trees, the syntax of terms of a programming language are all
examples of inductive types. In general, an inductive type is a collection of trees of finite
depth with a fixed branching structure. Inductive-inductive types (IITs) [11] generalise
inductive types by allowing multiple mutually defined sorts where the later sorts can be
indexed over the previous ones. Quotient inductive-inductive types (QIITs) [9] in addition
allow equality constructors. They are more general than simple quotients as the elements
of the type are generated at the same time as the quotienting. This allows the constructive
definition of Cauchy real numbers in type theory without using the axiom of choice [12].
Other examples are the partiality monad [3], the intrinsic syntax of programming languages
[4]. In general, for any generalised algebraic theory [5], the initial object in the category
of its models is a QIIT [9].

A simple example of a QIIT is a subset of the intrinsic syntax of type theory [4] with
two sorts, five operators and one equation:

Con : Set

Ty : Con→ Set

• : Con

– � – : (γ : Con)→ Ty γ → Con

U : Ty γ

El : Ty (γ � U)

Σ : (a : Ty γ)→ Ty (γ � a)→ Ty γ

eq : γ � Σ a b = γ � a� b

There is an ordinary sort of contexts Con, a sort of types Ty indexed over contexts. That
is, for every γ : Con we have that Ty γ is a sort. There are two operators producing
contexts, empty context • and context extension – � –, the latter refers to types. This is
why Ty cannot be defined separately after Con, they have to be given mutually, at the same
time. There are three different ways to form types corresponding to the three operators

1The first author was by supported by the “Application Domain Specific Highly Reliable IT Solutions”
project which has been implemented with the support provided from the National Research, Development
and Innovation Fund of Hungary, financed under the Thematic Excellence Programme TKP2020-NKA-06
(National Challenges Subprogramme) funding scheme. The second author was supported by the European
Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).
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producing Tys. Finally, the equation eq says that extending a context γ with a Σ type
made of a and b is the same as extending it first with a and then with b.

A model of type theory supports a particular QIIT if (i) there is an algebra called the
constructors: this means that for each sort there is a type, for each operator there are cor-
responding terms and for each equation there is a term of the corresponding identity type;
(ii) for any other algebra there is a unique algebra homomorphism from the constructor
to this algebra. An algebra homomorphism is given by terms (functions) for each sort
that respect the operations up to definitional equality of the model. If they only respect
the operations up to the identity type of the model, we only have propositional (weak)
computation rules for the QIIT. A formal description of these notions is given in [9].

The universal QIIT

If a model of extensional type theory (ETT) supports a particular QIIT called the universal
QIIT (UQIIT), then it supports all QIITs [9]. Hofmann’s conservativity theorem [8] says
that if a type can be expressed in intensional type theory with function extensionality and
uniqueness of identity proofs (ITT+funext+UIP) and there is a term of this type in ETT,
then there is also a term of this type in ITT+funext+UIP. As for any QIIT Ω the type

“the universal QIIT exists ⇒ Ω exists”

can be expressed in ITT+funext+UIP, we can transfer the proof of [9] given in ETT to any
model of ITT+funext+UIP. However as this type expresses the computation rules in “Ω
exists” using the identity type of the model instead of definitional equality, we only obtain
weak computation rules. Thus we have that if a model of ITT+funext+UIP supports the
UQIIT with propositional computation rules, then it supports all QIITs with propositional
computation rules.

The setoid model

The setoid model of type theory [1] justifies funext and UIP and our goal is to show that
it also supports the UQIIT, thus all QIITs with propositional computation rules.

We formalised in Agda the setoid model as a category with families (CwF [6]) with
extra structure. We formalised what it means that this model supports the UQIIT. More
precisely, we formalised what it means for a strict model to support the UQIIT. We
typechecked our formalisation with two strict models: the setoid model and the standard
(set) model. This involves saying what types and terms a UQIIT algebra consists of, what
a UQIIT homomorphism between two such algebras is (with definitional computation
rules) and what it means that two parallel homomorphisms are equal (up to the model’s
identity type). We used a variant of the UQIIT which supports infinitary operations [10].
The formalisation is available at the URL https://bitbucket.org/akaposi/qiit.

In the setoid model a context is given by a set (a type in the metatheory or target
model) and an equivalence relation. A type is a family of sets together with a family of
equivalence relations indexed over those of the context and fibration conditions: if there
are two elements of the context that are related, then we can transport between types at
each element (coercion), and this transport preserves the relation of the type (coherence).
A term is a function between the sets which respects the relation. In the setoid model,
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the identity type is not given by an inductive type once and for all for all types, but by a
separate relation for each type. This relation is inductively generated for inductive types
and is coinductively generated for coinductive types. Specifically, the identity type of two
functions (the function type is a coinductive type) says that they are pointwise equal
(pointwise equality is another function, hence a coinductive type). From the reflexive
property of the equivalence relation we obtain the usual reflexivity constructor of the
identity type. From the fact that all terms respect equality and the coercion operation
of types, we obtain the usual eliminator (transport or J) of the identity type. From the
definition of the relation for function space, we obtain function extensionality and from the
fact that the equivalence relations are proof irrelevant (target Prop [7] instead of Set), we
obtain uniqueness of identity proofs. Thus setoids model ITT+funext+UIP. Moreover, the
setoid model is strict, that is, all equalities are definitional in type theory as metatheory.
This provides a model construction (syntactic translation) [2]: from any model of ITT with
Prop, we obtain a “setoidified” version of the model which satisfies funext and UIP.

QIITs in the setoid model

In the setoid model, we can define the constructors of the UQIIT. This is given by an IIT
with twice as many sorts as the UQIIT: there is a “point sort” for each sort of the QIIT
and an additional propositional sort for its equality. The point sorts have a constructor
for each operation and the indexed point sorts in addition have coercion constructors.
The equality sorts are the free fibrant equivalence congruence relations over the equal-
ity constructors: all of them have constructors for reflexivity, symmetry, transitivity, one
congruence constructor for each operator, one constructor for each equation, and for the
indexed sorts, there is a coherence constructor. For example, we can define our example
QIIT with Con and Ty in the setoid model using the following IIT (sometimes we denote
implicit arguments by curly braces, e.g. in the type of ∼U).

|Con| : Set point sorts

|Ty| : |Con| → Set
...

– ∼Con – : |Con| → |Con| → SProp equality sorts

∼Ty : γ ∼Con γ
′ → |Ty| γ → |Ty| γ′ → SProp

...

| • | : |Con| point constructor for

– |�| – : (γ : |Con|)→ |Ty| γ → |Con| each operator

|U| : |Ty| γ ...

|El| : |Ty| (γ |�| |U|)
|Σ| : (a : |Ty| γ)→ |Ty| (γ |�| a)→ |Ty| γ
∼• : | • | ∼Con | • | congruence for

– ∼� – : (γ̄ : γ ∼Con γ
′)→ ∼Ty γ̄ α α

′ → (γ |�|α) ∼Con (γ′ |�|α′) each operator

∼U : {γ̄ : γ ∼Con γ
′} → ∼Ty γ̄ (|U| {γ}) (|U| {γ′}) ...

∼El : {γ̄ : γ ∼Con γ
′} → ∼Ty γ̄ (|El| {γ}) (|El| {γ′})

∼Σ : (ā : ∼Ty γ̄ a a
′)→ ∼Ty (γ̄ ∼� ā) b b′ →

∼Ty γ̄ (|Σ| a b) (|Σ| a′ b′)
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|eq| : γ |�| |Σ| a b ∼Con γ |�| a |�| b equality constructor

reflCon : (γ : |Con|)→ γ ∼Con γ equivalence relations

symCon : γ ∼Con γ
′ → γ′ ∼Con γ

...

transCon : γ ∼Con γ
′ → γ′ ∼Con γ

′′ → γ ∼Con γ
′′

reflTy : (a : |Ty| γ)→ ∼Ty (reflCon γ) a a

symTy : ∼Ty γ̄ a a
′ → ∼Ty (symCon γ̄) a′ a

transTy : ∼Ty γ̄ a a
′ → ∼Ty γ̄

′ a′ a′′ → ∼Ty (transCon γ̄ γ̄
′) a a′′

coeTy : γ ∼Con γ
′ → |Ty| γ → |Ty| γ′ fibration conditions

cohTy : (γ̄ : γ ∼Con γ
′)(α : |Ty| γ)→ ∼Ty γ̄ α (coeTy γ̄ α)

...

We define the IIT for the UQIIT completely analogously. Then the constructor UQIIT
algebra is given exactly by the components of this IIT.

The recursor takes as input a UQIIT algebra in the empty context and returns a homo-
morphism from the constructors to this algebra. The computation rules are definitional.
An algebra in an arbitrary context can be turned into an algebra in the empty context ·.
For example, for a type Γ ` C, we turn it into · ` Π(x : K Γ).C[x], that is to a dependent
function type where the domain is constant (K) Γ. Thus, when we want to use the recur-
sor in a context Γ, we convert the algebra into an algebra in the empty context, and then
we apply the recursor. The computation rules of this lifted recursor are still definitional.
Uniqueness of the recursor and the fact that the recursor is stable under substitution are
proved by induction on the IIT.

Further work

The notion of UQIIT algebra, morphism, the implementation IIT and the recursor in the
empty context are all defined in Agda. The lifting of the recursor to arbitrary context is
still a work in progress.

An alternative of our construction would be to directly reduce a QIIT to an IIT in the
setoid model by induction on the QIIT signature. This way we would avoid going through
the UQIIT and ETT and we expect that we would get definitional computation rules.
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Overview

The purpose of staged compilation is to write code-generating programs in a safe and er-
gonomic way. Although it is always possible to write metaprograms by simply manipulating
strings or deeply embedded syntax trees, this is often error-prone and tedious. Staging is
a way to have more guarantees about the safety and well-typing of metaprograms, and
also a way to integrate object-level and meta-level syntaxes more organically.

Two-level type theory (2LTT) [2] was originally developed for the purpose of doing
synthetic homotopy theory, by adding a metaprogramming layer on top of homotopy type
theory [6]. However, it turns out that 2LTT is also a great framework for metaprogramming
and staging in general, and it is applicable to a wide range of theories, both on the object
and meta level.

There is a simple semantics to 2LTT which justifies the metaprogramming view: this
is the presheaf model of 2LTT. Here, meta-level types are presheaves over the underlying
category of the object theory. Hence, every meta-level construction must be stable under
the object-level morphisms. The advantage of working in 2LTT stems from stability un-
der morphisms: if every construction is automatically stable, it becomes possible to omit
explicit handling of base morphisms. More concretely, from the staging perspective, this
means that we never have to deal with scoping, renaming, substitution or de Bruijn indices
in the object syntax, when working in 2LTT.

Generativity. Generativity means that we can only generate code, but not make deci-
sions based on the internal structure of object-level syntax. Generativity simplifies staging,
and it is often enforced in practical implementations [5]. However, non-generative staging
provides additional power and flexibility. A simple example for a non-generative feature is
conversion checking. This can be viewed as an axiom in 2LTT, which says that meta-level
(“strict”) equality of object-level values is decidable. We aim to investigate semantics of
non-generativity in the following.

Basic Rules and Usage of 2LTT

To illustrate using 2LTT for staging, we specify a simple variant of 2LTT where we have
exactly the same dependent type theory for the object-level and meta-level theories.

We have universes Us
i , where s ∈ {0, 1}, denoting a stage or level in the 2LTT sense,

and i ∈ N denotes a usual level index of sizing hierarchies. The two dimensions of indexing
are orthogonal, and we will elide the i indices in the following. We assume Russell-style
universes. Both U0 and U1 may be closed under arbitrary type formers, but eliminators
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in each only target the same universe, i.e. elimination cannot cross universes. We have the
following operations:

• For A : U0, we have CodeA : U1. This is the type of meta-level programs which
return object-level code with type A.

• Quoting: for A : U0 and t : A we have 〈t〉 : CodeA. In other words, for every
object-level term we have a metaprogram which immediately returns that term.

• Splicing: for t : CodeA, we have ∼ t : A. This means running a metaprogram and
inserting its result into object-level code.

• We also know that quoting/splicing is a definitional isomorphism, so 〈∼ t〉 = t and
∼〈t〉 = t.

A staging algorithm takes as input a closed term t : A where A : U0, and splices
the results of all metaprograms, so that we get an output term which is free of splices.
This can be implemented using variations of normalization-by-evaluation [1] which track
current stages. We do not detail staging algorithms here.

Let’s look at some examples. We have the object-level identity function as usual:

id0 : (A : U0)→ A→ A

id0 := λAx. x

Staging does not do anything with id0, since it has no splices. Likewise if we apply id0 to
object-level values, as in id0 Bool true. We also have the meta-level version:

id1 : (A : U1)→ A→ A

id1 := λAx. x

Note that this also works on object-level values, because of quoting:

∼(id0 (CodeBool0) 〈true0〉) : Bool0

Staging the above term computes to ∼〈true0〉, which in turn computes to true0. Thus, id1
is compile-time evaluated. There’s a third version, which is a specialized version of id1: it’s
also evaluated at compile time, but it only works on object-level types:

idCode : (A : CodeU0)→ Code (∼A)→ Code (∼A)

idCode := λAx. x

Now, ∼(idCode 〈Bool0〉 〈true0〉) also stages to true0. Meta-functions which are restricted to
Code are also useful when we want to define functions which are partially evaluated at
compile time. For example, if we want to inline a function argument for object-level list
mapping:

map : (AB : CodeU0)→ (Code(∼A)→ Code(∼B))

→ Code(List0 (∼A))→ Code(List0 (∼B)))

map := λAB f as. 〈foldr0 (λ a bs. cons0 (∼(f 〈a〉)) bs) nil0 (∼as)〉
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Presheaf Model

Why consider the presheaf model? The reason is that it’s the simplest semantics which
justifies the metaprogramming view of 2LTT. It is not the same thing as the staging
algorithm, which is based on normalization-by-evaluation, which is much more complicated
to formalize [3]. The presheaf model is fairly simple as far as models go, so it’s interesting
to see which staging features can be justified with it. We skip presenting the whole presheaf
model. For details, we refer the reader to [4, Section 1.2].

We give some examples for interpreting constructions in the model. We present the
results up to isomorphism, with some simplifications. We assume now that object-level
morphisms are substitutions. We have Bool0 : U0 and Bool1 : U1.

• A closed function t : Bool1 → Bool1 becomes a metatheoretical function in B→ B.

• A closed function t : Bool0 → Bool0 becomes a closed object-theoretic function in
Bool→ Bool.

• A closed function t : CodeBool0 → Bool1 becomes a function which maps a Bool
term in any context to B, such that the function commutes with object-theoretic
substitution. For example if we have a variable x, we can substitute it with any term
before feeding it to the semantic t, and the result is the same. In fact, this means
that t cannot depend on its term argument, hence t is specified simply by a B.

• A closed function t : Bool1 → CodeBool0 becomes simply a pair of closed Bool terms.

Yoneda lemma. The Yoneda lemma is a general statement which restricts the way
meta-level values can depend on object-level ones. First, note that any object-level typing
context Γ can be mapped to a presheaf, by taking the sets of parallel substitutions into Γ.
This is the Yoneda embedding of Γ, denoted by yΓ. The Yoneda lemma says that we have
the following isomorphism of sets:

(yΓ⇒ ∆) ' |∆|Γ

where ⇒ means a natural transformation, and |∆|Γ denotes the set that we get by eval-
uating the ∆ presheaf at the object-level Γ context. From this, what we essentially get is
that any 2LTT term Γ ` t : A, such that Γ is essentially interpreted as yΓ′ for some Γ′, is
interpreted as an element of |A|Γ′. We call Γ representable is there is such Γ′.

In particular, if Γ ` t : Bool1 and Γ representable, then since |Bool1|Γ′ = B, t is simply
an element of B in the semantics, and cannot depend on the typing context.

In short, whether the Yoneda lemma applies to a given term, depends on whether the
typing context is representable. In turn, the representability of the context depends on
what morphisms are in the object theory. We consider two options.

1. Morphisms are substitutions. In this case, y preserves context extension, i.e.
y (Γ, x : A) ' (yΓ, x : yA) in the presheaf model. That’s because a substitution which
targets (Γ, x : A) is equivalent to a pair of substitutions, targeting Γ and A respectively.
Therefore, if we have x1 : A1, x2 : A2, ..., xi : Ai ` t : B, such that all Ai are representable,
the entire context is also representable, and the Yoneda lemma applies.
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Which types are representable? For starters, every type of the form CodeA, since Code
in the model is essentially interpreted as y (eliding the formal complications arising from
possible dependencies of A on the context). Also, if we have x : A in a context, where
A : U0, that context extension is also interpreted as extension with yA. In short: if the
context only has Code types or types in U0, it is representable.

This greatly limits non-generative features in the model. Consider adding the axiom
which says that meta-level equality of object-level values is decidable: x : CodeA, y :
CodeA ` conversionA : (x = y) + (x = y → ⊥). This is a simple non-generative axiom,
since any constructive interpretation must look inside Code-s. This axiom is false if object
morphisms are substitutions. That’s because the context is representable, so we can sim-
plify using the Yoneda lemma. The statement that we get in the model is that “two terms
are either equal, or they are inequal and remain inequal after arbitrarily substitutions”.
Now, if we pick two variables x and y such that x 6= y, then they are not equal, but they
can be also made equal by substituting both variables with the same term.

Can we repair this? One possibility is to have decidable equality only for closed terms.
However, the syntax of 2LTT provides no way to talk about closed terms. Instead we’d
have to use a closed modality [3]. This would be interesting to investigate in future work.

2. Morphisms are weakenings. In this case, object morphisms are are so-called order-
preserving embeddings, meaning that a morphism can drop zero or more entries from a
context, so morphisms are essentially bitmasks which mark a sub-context. The action of
weakening embeds terms in larger contexts. Moreover, y does not preserve context exten-
sion. Hence, typing contexts are not necessarily representable, even if they only contain
object-level bindings. So the Yoneda-reduction of dependencies generally does not apply.

Now, conversion is fine, because inequality of terms is stable under weakening. On the
other hand, by only having weakening in the object theory, the range of supported object
theories is greatly restricted. For example, we can’t have β-reduction for functions in the
equational theory, since that’s specified using substitution. Likewise, dependent types are
out, since the typing of dependent elimination involves substitution.

Simple type theories still work, if we only have weakening in their equational theory.
For the perspective of staging, this is fine, because in code generation we care about the
intensional definition of programs, and we do not want to equate β-reducts, since a primary
use-case of staging is to improve runtime performance, hence distinguish between possibly
β-convertible programs.

It appears that if morphisms are weakenings, then the presheaf model is compatible
with a wide range of non-generative axioms. For example, we can also postulate count-
ability of CodeA, i.e. that there are injections indexA : CodeA → Nat1. In the presheaf
model, the indexing function works by enumerating maximally strengthened terms, which
are stable under weakening.

Other ways of justifying non-generativity. An alternative solution would be to use
something other than the presheaf model to justify non-generative axioms. For example:
could we use the staging algorithm itself, i.e. does normalization-by-evaluation support
non-generativity? It seems likely, as semantic values need only be stable under weakening.
This remains future work.
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226



References

[1] Andreas Abel. Normalization by Evaluation: Dependent Types and Impredicativity.
PhD thesis, Ludwig-Maximilians-Universität München, 2013. Habilitation thesis.

[2] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. Two-level type
theory and applications. ArXiv e-prints, may 2019.
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The amyloid state of proteins
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In developed countries age related diseases are in focus, as life expectancy increases and ev-
eryone wishes a better quality of life. Aging-related diseases are unquestionably connected
to protein aggregation, more precisely to amyloid formation as is the case of cataracts,
type II Diabetes Mellitus, Alzheimer’s disease etc.. Formation of protein fibrils, plaques
and tangles are typical markers of the above and other diseases highlighting that behind
the neuroanatomic changes established postmortem: key proteins undergo restructuring.
Today over 50 different polypeptides and proteins are known to self-assemble and form
fatal amyloid fibrils. Out of the approximately 100 000 proteins of an eukaryotic cell
70% is built up from “independent” domains or modules. When these linear polymer are
module-like, they autonomously fold into a globular structure, whose conformation cor-
relates strongly with its biological function. The relative abundance of open conformer(s)
can be enhanced by mutation(s), which in turn can lead to amyloid formation, aggregation
and deposition of the protein. For example, in lysozyme a point mutation can initiate such
a deposition. (Booth et al., Nature, 1997, 385, 787) Deciphering intermediates and “open”
forms of proteins by NMR (Rovó et al. Chemistry a European Journal 2013, 19, 2628) is
therefore a key approach to understand the rout to amyloid formation. Hundreds of ex-
perimental evidences show that beside the unique globular fold, proteins can thus have an
alternative, highly structured, fibrillar form (Dobson Trends Biochem. Sci. 1999). Amyloid
like fibrils are built up from repeated β-sheets, which are in turn made up of β-strands
orthogonal to their main axis. (Sunde & Blake, Adv. Prot. Chem. 1997) The formation of
these “amyloid” like β-strands is not coded by any specific amino acid sequence! Therefore
the question to be asked seems obvious, namely is aggregation a natural or an abnormal
process? Is it possible that the “amyloid” like aggregates of proteins are generic and in-
trinsic structures of polypeptides composed of natural alpha amino acids? If the formation
of an amyloid like fibril is indeed not coded by the amino acid sequence, then its forma-
tion cannot be governed by the amino acid side-chains. Therefore, the aggregation is due
to the interaction between backbone atoms! The stability of the supramolecular complex
increases both with the length of the polypeptide chain and the number of interacting
β-strands increasing (Beke et al. JACS 2006, Pohl et al. JACS 2006, Perczel et al. JACS
2007, Horváth et al. 2019) The formation of an ”amyloid” like supramolecular ”matrix”
from β-sheets is energetically favored. Thus, the aggregation of polypeptides is indeed a
”normal” energy driven process. Proteins can be regarded as “misfolded” polymers, or
perhaps proteins are “misfolded” amyloids?! Conclusion: 1) The formation of amyloid like
β-strands is not coded by any specific amino acid sequence. 2) The H-bond β-layers are
characteristics of amyloids. 3) Both length and the number of amino acids in the extended
polypeptide chain makes β-layer more stable. 4) Amyloid type aggregation of polypeptides
is indeed a normal, energy driven process. Amino acid composition and the form of the
dry steric zipper as interfaces fine tunes this natural process.
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laszlo.keresztes@student.elte.hu

Motivation

We achieved great classification accuracy with SVM in the amyloid classification task
of hexapeptides.[1] We were interested in how could we extract information about what
drives the amyloid property in hexapeptides.

Amyloid Effect Matrix

Using a linear classifier (e.g. SVM), one can construct a matrix of size 20 × 6, which
compresses the classification method.

1 2 3 4 5 6

A -0.26 -0.32 -0.27 -0.14 -0.43 -0.22
R -0.45 -0.41 -0.46 -0.33 -0.52 -0.35
N -0.40 -0.34 -0.49 -0.27 -0.46 -0.30
D -0.49 -0.43 -0.56 -0.41 -0.56 -0.36
C -0.09 -0.21 0.03 -0.05 -0.17 -0.05
Q -0.37 -0.30 -0.36 -0.34 -0.48 -0.32
E -0.51 -0.41 -0.43 -0.30 -0.61 -0.39
G -0.23 -0.37 -0.46 -0.37 -0.30 -0.33
H -0.32 -0.26 -0.26 -0.30 -0.35 -0.25
I -0.06 -0.08 0.26 0.09 -0.06 -0.07
L -0.10 -0.18 0.02 0.04 -0.22 -0.13
K -0.39 -0.45 -0.51 -0.35 -0.59 -0.32
M -0.17 -0.25 -0.02 -0.10 -0.19 -0.18
F -0.13 -0.11 0.05 -0.03 -0.13 -0.11
P -0.56 -0.38 -0.56 -0.51 -0.42 -0.45
S -0.37 -0.35 -0.41 -0.30 -0.48 -0.23
T -0.34 -0.33 -0.28 -0.23 -0.40 -0.23
W -0.17 -0.17 -0.09 -0.06 -0.12 -0.16
Y -0.23 -0.11 -0.13 -0.06 -0.18 -0.15
V -0.05 -0.14 0.19 0.14 -0.19 0.01

Table 1: Amyloid Effect (AE) Matrix

Position-specific ranking of amino acids

Using the AE matrix, if we sort the amino acids on every position, we get different rankings
(but there are similarities).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 V I C L F M W G Y A H T S Q K N R D E P
2 I F Y V W L C M H Q A T N S G P R E D K
3 I V F C L M W Y H A T Q S E R G N K D P
4 V I L F C W Y M A T N H E S R Q K G D P
5 I W F C Y M V L G H T P A N Q S R D K E
6 V C I F L Y W M A T S H N Q K G R D E P

Table 2: Ranking of amino acids on the 6 positions

Extremal values

The (positional) extremal values of the AE matrix show the amino acids that are the most
and least connected to the amyloid property.

1 2 3 4 5 6

ARGMAX V I I V I V
MAX -0.047 -0.076 0.259 0.142 -0.064 0.008
ARGMIN P K P P E P
MIN -0.559 -0.453 -0.562 -0.506 -0.605 -0.451

Table 3: Extremal amino acids from AE matrix

One could use these amino acids to transform a non-amyloid peptide into an amyloid
one, with less amino acid replacement.

Amyloid and non-amyloid indicators

We wanted to construct simple rules, which indicate the amyloid or non-amyloid property
of the hexapeptide in some cases.

We formulated the following problem.

Problem 1. Are there any amino acids in proper positions, which guarantee that the
hexapeptide would be amyloid?

(Similarly to non-amyloid.)

Example 2. The (P,P) amino acid pair on the (3,4) position pair is a non-amyloid
indicator, if into the xxPPxx ”incomplete” hexapeptide we change arbitrary amino acids
with ”x”s, the resulting hexapeptide would always be non-amyloid.

The problem could be answered using the SVM linear predictor. Firstly we assume,
that the SVM classifies without error, then we extend the result with SVM error quantities.

Perfect SVM: amyloid indicators

If the SVM is perfect, then the following ”incomplete” hexapeptides would always result
in amyloids with arbitrary substitution into the positions of ”x”s’:
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’VIIVxx’, ’VIIxIx’, ’VIIxxV’, ’VIxVIx’, ’VxIVIx’, ’VxIVxV’, ’VxIxIV’, ’VxxVIV’, ’xI-
IVIx’, ’xIIVxV’, ’xIIxIV’, ’xxIVIV’

Here, one ”incomplete” hexapeptide formulates a rule for 400 real hexapeptides. Sim-
ilarly to these, if we could fix 4 amino acids, we could formulate many rules, altogether
3047.

But there is no rule with only 3 amino acids fixed.

Perfect SVM: non-amyloid indicators

If the SVM is perfect, then the following ”incomplete” hexapeptides would always result
in non-amyloid with arbitrary substitution into the positions of ”x”s’:

’PxPxxx’, ’PxDxxx’, ’xxPPxx’, ’xxPDxx’, ’xxPGxx’, ’xxPKxx’, ’xxPQxx’, ’xxDPxx’,
’xxDDxx’, ’xxDGxx’, ’xxDKxx’, ’xxDQxx’, ’xxKPxx’, ’xxKDxx’, ’xxNPxx’, ’xxGPxx’,
’xxRPxx’, ’xxPxEx’, ’xxPxKx’, ’xxPxDx’, ’xxDxEx’, ’xxDxKx’, ’xxDxDx’, ’xxKxEx’

Here, one ”incomplete” hexapeptide formulates a rule for 160.000 real hexapeptides.
If we could fix 2 amino acids, these are the only rules, altogether 24.

But there is no rule with only 1 amino acid fixed.

Non-perfect SVM: correctness of indicators

The SVM predictor has the following measures for errors: TPR = 0.747, TNR = 0.896, PPV =
0.804, NPV = 0.861.

With these quantities, we could approximate the correctness of the previous rules.

For an amyloid indicator (e.g. VxIVIx) the rule always gives a positive (amyloid flag).
Based on PPV, an amyloid rule is expected to be 80 percent accurate.

For a non-amyloid indicator (e.g. xxPPxx) the rule always gives a negative (non-
amyloid flag). Based on NPV, a non-amyloid rule is expected to be 86 percent accurate.

Amyloid indicators on groups

We reformulated the previous problem because we were interested in the rules if we could
replace the ”x” only from a predefined group (not all 20 amino acids).

Problem 3. Problem Are there any amino acids in proper positions, which guarantee for
a group that the hexapeptide would be amyloid?

Example 4. Example The CxIWxx ”incomplete” hexapeptide is an amyloid indicator
for the GAST group, if we arbitrarily replace ”x”s with one from GAST, the resulting
hexapeptide would always be amyloid.

Amino acid groups

We observed 3 normal amino acid groups and 2 artificial groups. [2]

The table includes (in this order) the name of the group, the members of the group,
the least number of fixed amino acids required for a rule, the number of (minimal) rules.

Amyloid patterns in hexapeptides
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Homogen class name Class elements Least k ind N of ind

small nonpolar GAST 3.0 323.0
hidrophobic CVLIMPFYW 3.0 39.0
polar DENQHKR 3.0 4.0

Artifical classes Class elements
hidrophobic - {P} CVLIMFYW 1.0 34.0
amino acids - {P} QFYESNCDMLIAHGWRKVT 3.0 4.0

Table 4: Amyloid indicators for groups

Examples for the normal groups

small nonpolar (first 10): VIIxxx IIIxxx VxIVxx VxIIxx VxILxx VxIFxx VxICxx VxIWxx
VxVVxx VxVIxx

hidrophobic (all): VxIVxx VxIIxx VxILxx VxIFxx VxVVxx VxVIxx VxVLxx IxIVxx
IxIIxx IxILxx IxVVxx IxVIxx CxIVxx CxIIxx CxILxx CxVVxx CxVIxx LxIVxx LxI-
Ixx LxILxx LxVVxx LxVIxx FxIVxx FxIIxx FxVVxx MxIVxx MxIIxx MxVVxx xxIVIx
xxIVxV xxIVxC xxIVxI xxIVxF xxIIxV xxIIxC xxILxV xxVVxV xxVVxC xxVIxV

polar (all): xxIVIx xxIVWx xxIIIx xxVVIx

Examples for artifical groups

hidrophobic - {P} (all): Vxxxxx Ixxxxx Cxxxxx Lxxxxx Fxxxxx Mxxxxx xIxxxx xFxxxx
xYxxxx xVxxxx xWxxxx xLxxxx xxIxxx xxVxxx xxFxxx xxCxxx xxLxxx xxMxxx xxxVxx
xxxIxx xxxLxx xxxFxx xxxCxx xxxWxx xxxxIx xxxxWx xxxxFx xxxxCx xxxxYx xxxxxV
xxxxxC xxxxxI xxxxxF xxxxxL

amino acids - {P} (all): xxIVIx xxIVWx xxIIIx xxVVIx

Conclusion

With the usage of a powerful linear predictor (SVM) we were able to extract useful in-
formation about the amyloid property of hexapeptides. The determined simple rules (e.g.
xxPPxx is non-amyloid with every possible substitution) help chemists in the construc-
tion of peptides with desired properties. The anti-amyloid property of proline (P) was
illustrated again with the amyloid and non-amyloid indicators.
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Motivation

During the project, one of the main goals was to build a model, which can predict that
a given peptide is amyloid or not. We don’t have any databases which contains other
external factors, only the amino acid sequence and amyloid - non-amyloid labels. Thus
the model has to use only the amino acid sequences. As Machine Learning (ML) is a very
powerful tool, we used ML techniques, more precisely Support Vector Machines (SVM).
As SVM is one of the simplest and most interpretable ML tools, the main goal was to
build an SVM model with high prediction accuracy and other good metrics and to extract
new information from the model about the ability to form an amyloid state.

Support Vector Machines

In machine learning, Support Vector Machines are usually used for classification tasks. In
the 2-dimensional space, the problem is the following:

N points are given is R2: x1,x2, . . . ,xN ∈ R2. Every point has a color ci ∈ {blue, red}
i = 1, . . . , N . We want to find a line separating the points with different colors.

If there exists a separating line, infinity number of separating lines exist. Therefore,
we want to find the best separator, that is, the line with the widest margin.

It can be shown that when searching for the best separator, one has to solve an opti-
mization problem (a quadratic convex function has to be minimized). In some cases, the
two class of points are not separable, so it is not expected to separate the points correctly,
some of them can lie on the wrong side of the separator, but the number of misclassified
points are controlled.
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In Rn, we generalize the mentioned ideas for vectors and hyperplanes. To find the op-
timal separating hyperplane, one has to solve the following convex quadtaric optimization
problem (QP):

min
w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi

subject to yi(wxi + b) ≥ 1− ξi for i = 1, . . . , N

ξi ≥ 0 for i = 1, . . . , N

Database, representation

We got our data from the Waltz database, which contains 1415 sequences, all of them are
of length six. The database also contains the amyloid - non-amyliod labels. It is available
here: http://waltzdb.switchlab.org/sequences. If we want to use SVM, we have to
represent the hexapeptides as real vectors. This can be done by using another database.
AAindex is a database of numerical indices representing various physicochemical and bio-
chemical properties of amino acids. Using AAindex database, we can represent an amino
acid as a real vector with more than five hundred coordinates by collecting all the numeri-
cal values from the database. This way, it is possible to represent hexapeptides as vectors:
we just have to concatenate the corresponding amino acid vector representations. So, all
hexapeptides are represented by real vectors with more than three thousand coordinates.
AAindex is available here: https://www.genome.jp/aaindex/.

Classificaton by using SVM

We build support vector machine models with different hyperparameters. Using the best
model, 84.15±3.31% of the test data was classified correctly with 95% confidence interval.
The table below shows the true positive rate, true negative rate, the positive predicted
value and the negative predicted value.
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TPR TNR PPV NPV

0.754 0.895 0.803 0.865

Feature selection

We have more than 3000 features and the normal vector of the separating hyperplane
has many zero coordinates. This suggests us, maybe there are redundant coordinates in
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the vector representation. Therefore, we wanted to drop the features which don’t give us
major information and select the important ones. It can be done by using feature selection
methods.

One simple feature selection algorithm is the following:

• Find the best separating hyperplane, and and let w denote its normal vector;

• Order the features in descending order with respect to |wi| (i=1,...3318);

• Drop the features at the end of the order as these are possibly redundant features.

This way, we get the features which are indeed important is the amyloid - non-amyloid
classification problem. Using the algorithm, we managed to find 17 features, which is much
more less than 3000. Using only these features, the classification accuracy is still high,80%.
There are 9 features of the 17 features from which the classification accuracy is 78%.

Next steps

One of the next steps is improving the SVM model. For this purpose, active learning
techniques could be used. It’s a special case of machine learning. It’s used, when there
are lots of unlabeled data but it’s expensive to label them. In active learning, a learning
algorithm can interactively query a user to label new data points. The algorithm will ask
for the most uncertain points labels. We would also like to make predictions for longer
peptides using different techniques, too.

Evelin Szögi
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The main aim of this work was to test and validate the Budapest Amyloid Predictor
[3] on real-life data by creating several databases from the Protein Data Bank [1] and us-
ing the entries of these databases as input of the predictor. By examining these datasets,
interesting results regarding the frequencies of hexapeptides predicted as amyloid-forming
were observed which support the assumption that the Budapest Amyloid Predictor prob-
ably can be applied as a useful tool in determining the amyloid-forming propensity of
hexapeptides.

Principal idea: sliding windows

In a 2015 paper by Famı́lia et al. [2] which describes a neural network model (APPNN)
applicable for the problem regarding the prediction of the amyloid-forming propensity of
proteins, numerous statistical values were assigned to each amino acid (e.g., based on their
incidence in α-helices and β-sheets). Our idea was to apply the same method except not
for individual amino acids but peptides consisting of six amino acids, i.e. hexapeptides.

The execution of this idea included a so-called ”sliding window” with a length of six
amino acids. This window was pushed through every α-helix and β-sheet section as well
as every section with a neither α-helix nor β-sheet secondary structure (referred to in this
work as ”other” secondary structure) of the entries in the 30% homology filtered Protein
Data Bank (PDB), creating three new databases from the hexapeptides which appear in
α-helix, β-sheet or ”other” sections, respectively. Following this step, different statistical
values were obtained from these databases, e.g., the frequency of hexapeptides in different
secondary structures.

In Figure 1, there is an illustration as an example of this method: suppose that in an
entry of the homology filtered PDB, there is an α-helix section which consists of the amino
acids between the two bolded lines, i.e. GGKQALETV V AIAS. The first hexapeptide
observed by the sliding window is the peptide of the first six amino acids in the section,
i.e. GGKQAL. After storing this peptide in a list, the window is moved by one amino
acid to the right, meaning that the next hexapeptide to be stored in a list is the one that
expands from the 2nd amino acid to the 7th amino acid of the section, i.e. GKQALE.
This method is applied repeatedly until the last six amino acids of the section (in this case,
V V AIAS) are reached. This sliding window approach was used for every section with the
given secondary structure in the homology filtered PDB, creating three new datasets, one
for each secondary structure.

After assembling these new datasets, it was possible to apply the SVM model of the
Budapest Amyloid Predictor to the sets of hexapeptides belonging to each secondary
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Figure 1: An illustration of the hexapeptides derived from the application of a sliding
window.

structure. These input databases consisted of approx. 1.62 million, 308,000 and 950,000
different sequences for α-helix, β-sheet and ”other” secondary structure sections. From
the output of the SVM model, the prediction labels (”amyloid” / ”not amyloid”) and the
numeric values (SVM score) considered in the classification process could also be used in
further examination.

Based on these data, the histograms of the SVM scores in each secondary structure
dataset were created: these diagrams closely resembled bell curves (see Figure 2), leading
to the assumption that the scores which belong to the same secondary structure may be
originated from a normal distribution.

Figure 2: Histogram of α-helix hexapeptide SVM scores.

The output of the SVM scores implies that on average, hexapeptides from an α-helix
section are less amyloid-like than ones from a β-sheet section, but more amyloid-like than
hexapeptides from a section with a neither α-helix nor β-sheet secondary structure.
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Prefixes and suffixes of secondary structures

A similar approach using sliding windows was also applied to the end segments of the
different secondary structure sections: for every section belonging to a secondary structure,
14 hexapeptides were collected in the following way (see Figure 3):

For a prefix, the sliding window starts at the same position as described before, i.e.
the first six amino acids of the given section. After that, the sliding window is moved by
one amino acid to the left ; this step is repeated until the window contains the hexapeptide
which directly precedes the given section. During the process, 7 hexapeptide can be seen
in the sliding window; these hexapeptides are stored in 7 different lists, according to the
number of their amino acids which do not belong to the original secondary structure
section (denoted by k on the figure). This method is executed for every section with a
given secondary structure, yielding 7 databases for every secondary structure. (A very
similar approach can be applied for suffixes, starting with the last six amino acids of a
section, then moving the window by one amino acid to the right, etc.)

Figure 3: An illustration of the hexapeptides derived from the application of a sliding
window for the prefix of a secondary structure section.

After creating these 14 datasets (7-7 for prefixes and suffixes) for each secondary struc-
ture, it was possible to determine the ratio of amyloid-like hexapeptides in each dataset
with regard to their k value (the number of their amino acids outside the examined sec-
tion). E.g., as it can be seen in Figure 4, the process of dropping of the ratio of amyloid-like
hexapeptides in β-sheet prefixes (according to the SVM model) as k increases is quite fast:
from k = 0 to k = 3, the ratio decreases from about 33% to 5%, but for greater k values,
the ratio stays about at the same level. It is quite interesting that more or less the same
diagram can be generated if β-sheet suffixes are considered (see Figure 5).

Similar results were achieved for other secondary structures as well as when stricter
conditions were applied during the process of filtering the examined sections.

Conclusion

Applying the SVM classificator (Budapest Amyloid Predictor) developed by members of
our research group for real-life protein sequence data from the Protein Data Bank, promis-
ing results were achieved, mainly in line with preliminary expectations. As a conclusion,
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Figure 4: Ratio of hexapeptides predicted as amyloid-like in β-sheet prefixes depending
on the number k of amino acids outside the given section.

Figure 5: Ratio of hexapeptides predicted as amyloid-like in β-sheet suffixes depending on
the number k of amino acids outside the given section.

it can be strongly assumed the Budapest Amyloid Predictor can be considered as a useful
tool in determining the amyloid-forming propensity of hexapeptides.
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Background

Amyloid formation has long been associated with several diseases, such as Parkinson’s
disease, Alzheimer’s disease and Creutzfeldt-Jakob’s disease, to name a few. Therefore un-
derstanding amyloid formation could be advantageous in understanding these associated
diseases, but regardless of the benefits, our knowledge of the topic is limited.

Using the Support Vector Machine (SVM) [1] method and an available database
of characterized hexapeptides, the WALTZ-DB 2.0 [5], our research group created a
prediction algorithm for hexapeptides [3], which gave us an opportunity to define the
hexapeptide-graph:

Definition 1 Hexapeptide-graph
Let G = (V,E) a simple, undirected graph, where

• v ∈ V are all the 206 possible hexapeptide.

• For v1, v2 ∈ V , {v1, v2} ∈ E ⇐⇒ Hamm(v1, v2) = 1, where Hamm() is the
Hamming distance.

• There is an Ami : V → {0, 1} label on each node, based on our SVM predictor
describing the amiloidicity of the underlying hexapeptide.

On this hexapeptide-graph, to support the team who in practice is making the syn-
thetisation, we had two tasks:

Given a Start and Stop hexapeptide:

• Find all possible paths between a Start and Stop hexapeptide with length k, using
only amyloid or non-amyloid nodes.

• Find a shortest path between a Start and Stop hexapeptide, while using only amyloid
or non-amyloid nodes and shortest is minimizing for

– number of point-mutations during the path (Hamming distance),

– a weighting of the amino acid alphabet (referring to the difficulty of synthesis),

– the actual number of nodes.
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Figure 1: A 5 node subgraph of the hexapeptide graph. Green: Amyloid, Red color: non-
amyloid

All paths with length k

For the first problem, we have used a depth-first search (DFS) based backtracking algo-
rithm [6] with a pruning condition. The DFS base is due to practical concerns: with typ-
ically longer path-segments and fewer branches, it favors Memory in the Memory-Time
trade off.

The idea for the pruning: suppose we start at t and s is the stopping node. During the
run of our DFS, we are at a certain node c with a corresponding path-segment ps. If

Hamm(c, s) + |ps| > k, than

due to the construction of the graph, ps cannot be finished so that the resulting path has
length k.

Here is a sample using LATVYV as starting and VQIVYK as stopping node for 6-long
paths:

LATVYV PATVYV PQTVYV PQTVYK PQIVYK VQIVYK
LATVYV PATVYV PATVYK PQTVYK PQIVYK VQIVYK
LATVYV LARVYV LARVYK VARVYK VQRVYK VQIVYK
LATVYV LARVYV LARVYK LQRVYK VQRVYK VQIVYK

Shortest path

For the second problem, in this special case we have two distinct distance metric on the
nodes:
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• the usual graph-metric of how many edges does it take to get from t to s, and

• a global distance metric of Hamming distance of the underlying hexapeptides.

This makes the problem similar to path finding on road networks, where the connecting
roads and the physical distance defines the problem. Borrowing from the analouge problem,
we have chosen an extension of Dijkstra’s algorithm, the A∗ [2] algorithm, because it is
often used in this situation.

A∗ is an informed search algorithm, meaning it incorporates a ‘sense of direction’, a
heuristic of how different the current path-segment from an abstracted strait-line. With
this heuristic incorporated, the algorithm guaranteed to find an optimal path without pro-
cessing any node more than Dijkstra’s algorithm, but in practice, it is usually considerably
better.

Figure 2: A simulation between A∗ algorithm (left) and Dijkstra algorithm (right). Green:
start position, Red: stop position, Yellow: the proposed path, Blue: processed nodes [4]

In our case, the cost-function had to incorporate a weighting of the amino acid alpha-
bet, mirroring the difficulty of synthesis. In the end, our custom cost-function took the
form of

c(ps) = |ps|+Hamm(ps[−1], s) +
∑

n∈ps
Walphabet(n), where

ps is the actual path-segment, ps[−1] is the last node of the path-segment, Hamm() is
the Hamming distance and Walphabet is the weighting of the amino acid alphabet.

Here is a sample using LATVYV as starting and VQIVYK as stopping node:

LATVYV LATVYK AATVYK AQTVYK AQIVYK VQIVYK

Pathfinding in the hexapeptide-graph: through the amyloid and non-amyloid nodes
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• Beka Grdzelishvili and Viktória Zsók: Design and Implementation of Digital
Image Processing in Functional Programming
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Targeted static fault localization in Erlang programs1
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Abstract

Static source code analysis techniques may help the programmers in various tasks:
code comprehension, testing, debugging, etc. They often need to reproduce executions
that result in faulty behaviour. Program analysis techniques with symbolic execution
can help to solve this task. In this paper we propose a method to select an appro-
priate execution path from the static control-flow graph that may lead to a given
runtime error in Erlang software. We build our tool on the RefactorErl static analyser
framework.

1 Introduction

Fault localization is the act of identifying the locations of faults in a program. Even
when bugs in software are discovered due to some faulty behavior (e.g. a runtime error
occurs), finding the location of the fault is a non-trivial task. Error detection mechanisms
are vital for building highly reliable systems. Fault localization is one of the most time
consuming, and expensive part of software development and maintenance. Given the size
and complexity of large-scale software systems today, manual fault localization becomes
more and more futile, so effective automatic methods are needed.

In a concrete execution, a program is evaluated on a specific input and a single control-
flow path is explored. Symbolic execution [4] uses unknown symbolic variables in evalua-
tion, allowing to simultaneously explore multiple paths that a program could take under
different inputs.

We can use symbolic execution to help us in fault localization. We target to find an
execution path in the program, the ”error path”, that may result in a runtime error in a
given point of the program. Thus we build a direct symbolic execution engine for a given
execution path in the Erlang programs based on the RefactorErl framework [7]. We are
using the SMT solver of Z3 [2] to solve the constraints that we gather during our analysis.

The main goal of our work is to provide an algorithm and a tool that helps Erlang
developers to reproduce a faulty behaviour that results in a runtime error. In this paper,
we present the algorithm based on the static analyses functionalities already defined by
RefactorErl.

2 Defining the problem

In this section we will introduce the problem which can be described as the line-reachability
problem: given a target expression or line in the program, we want to find a realizable

1The research has been supported by the European Union, co-financed by the European Social Fund
(EFOP-3.6.3-VEKOP-16- 2017-00002). The research is part of the ”Application Domain Specific Highly
Reliable IT Solutions” project that has been implemented with the support provided from the National Re-
search, Development and Innovation Fund of Hungary, financed under the Thematic Excellence Programme
no. 2020-4.1.1.-TKP2020 (National Challenges Subprogramme) funding scheme.
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path to that point in the control-flow graph, if it exists. This problem is the equivalent of
the very general problem of finding a path that causes the program to enter a particular
state, that can be especially useful for debugging or regression testing over a program. For
example, if we know that an error may occur at a given line in the code, knowing the path
- and so the conditions and input values leading to the fault, we may have an easier time
fixing it.

1 -module(example1).

2 -export([foo/2]).

3 foo(A, B) ->

4 if

5 A rem 2 == 1 ->

6 C = A + B,

7 A / C;

8 true ->

9 C = A - B,

10 A / C

11 end.

For the sake of simplicity, a division by zero will illustrate the
bug we intend to find. Consider the following example Erlang
code on the left, and suppose during execution we encountered
a division by zero error on line 10. Let us assume our goal is to
determine with which inputs do we reach the line containing the
possible fault. Exploring the control-flow graph built from the
function we can see the graph branches off at the if expression.
To reach the target line in the execution path the first condi-
tion has to be false and the second condition has to be true (in
this case the second condition is the default ”true”). Our set of
conditions will contain the negation of the first condition of the
if expression, and the condition ”true”. Evaluating this set of
conditions ¬(A mod 2 = 1) and true or simply A mod 2 = 0,
we can find that the error can occur only if the variable A is
even. This is of course true, but it is not enough information in

itself to highlight the cause of the error. As we can see the error originates from the value
of the variable C being equal to zero, so we should add this to our set of conditions: C = 0

This condition for the variable C and the previously established condition for A de-
termine the conditions leading to the error, however, they are not enough on their own to
find the input values possibly leading to the error. It is easy to see, that the value of C
will be zero only if A = −B, but our set of conditions does not say anything of the value
of B. Our set is not yet complete, since the variable C is not an input parameter of the
function, we have to find the match expression that assigns value to the variable. Using
this as our next condition the following can be established:

¬(A mod 2 = 1), C = 0, C = A+B
Given this set of conditions, we have constraints on both input parameters A and B.
Evaluating these with the use of an SMT solver we can find values that satisfy these
conditions leading to faulty behaviour.

3 Defining the algorithm

In this section, we present our algorithm for symbolic execution to find a path from the
program entry point to the specified target expression. This algorithm can be used to deter-
mine possible values of input parameters needed to reach the target line, and also presents
a set of conditions for these parameters that need to be satisfied. The algorithm uses a
form of symbolic backward execution called call-chain backward symbolic execution [5], a
variant of symbolic execution which uses a combination of the traditional forward symbolic
execution and symbolic backward execution. While inside each function the exploration is
done with forward symbolic execution, the analysis follows the call-chain backwards from
the target point to the entry point of the program.
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The exploration starts at the target expression. First, we determine the path from the
function containing the target to the target expression itself. For this, we use the control-
flow graph built from the function and explore it to find a feasible path to the target node
while at every branch collecting path conditions along the path. The CFG of the function
is traversed in a breadth-first manner, and the first found path is returned. This gives us a
set of expression nodes in the Semantic Program Graph, that can be used to determine the
initial set of conditions. Once a path has been found we need to check the set of conditions
for satisfiability. On failure, we need to discard the path and find another one. Using this
method we can determine a valid path from the function entry point to the target. After
this, we determine the callers of the function, and recursively repeat this process until we
are able to find a path from the program entry point to the target expression.

Our initial set of conditions is based on the conditions collected from the branches of
the if expressions. When we are walking a selected path on the control-flow graph, we need
to add the conditions that were met along the path, since those conditions had to be met
to get to the selected target point using this path. However, this will not be enough. In
Erlang the branches of an if expression are scanned sequentially until a guard sequence
that evaluates to true is found. This means that if we found that in an if expression the
second condition was met, we also know, that the first condition evaluated to false. For
this reason, we also need to add the negate of every previous condition that have not been
met to our set.

While building the set of conditions, we also need to keep track of the variables in
the conditions. While exploring the control-flow graph, every semantic variable node when
first encountered is saved in a map data structure with the original name of the variable.
When later a different variable with the same name is encountered, the new variable will
be renamed, ensuring that every instance of a variable in the set of constraints will indicate
the same semantic variable.

4 Related Work

Symbolic execution is not a new topic in the Erlang ecosystem. Formal [8] and informal [3]
definitions were published with the aim of program verification. Our research is not fo-
cusing on verification, we aim to support debugging processes of the Erlang developers
through the RefactorErl framework.

Besides verification, symbolic execution is used for testing purposes in the context of
Erlang. CutErl [6] introduces a concolic testingframework for Erlang through a dynamic
symbolic execution framework. Our approach is similar to the mechanism of CutEr. Both
methods are collecting symbolic constraints and evaluate them with the Z3 solver. How-
ever, our tool uses a full static approach and calculates the constraints on execution paths
generated from the static control-flow graph and traverses it backwards. CutEr uses a
concrete execution to perform a forward traversal.

The authors of [1] present a work on runtime error detection based on symbolic execu-
tion. They are transforming Erlang programs to Prolog facts and provide an interpreter
to evaluate them on symbolic input data. Their analysis reports input patterns that lead
to runtime errors within a given bound. Our analysis works in reverse order. It takes an
occurred runtime error as input and searches for execution paths that may lead to the

Targeted static fault localization in Erlang programs

253



faulty behaviour.
A generic algorithm for call-chain backward execution (CCBSE) was presented in [5]

which in combination with any forward search strategy resulted in an efficient way to
solve the line-reachability problem. In this algorithm, the main difference to the traditional
symbolic backward execution is that, while it follows the call-chain backwards from the
target point, inside each function the exploration is based on a traditional forward symbolic
execution. For CCBSE, the availability of the inter-procedural control-flow graph is a
crucial requirement, which is described as a disadvantage for the reason that constructing
such a graph can be quite challenging in practice. However, RefactorErl already includes
this functionality making the algorithm a favourable option for us to use it.

5 Conclusion and Future Work

Locating the sources of a runtime error is an everyday task of an Erlang developer. Dy-
namic and static tools could provide help in this task. In this paper, we proposed a method
based on static analysis of Erlang programs to identify execution paths that may lead to
a given runtime error. We use the control-flow graph of RefactorErl and apply dynamic
backward symbolic execution on it to gather the constraints of the execution. We use the
Z3 SMT solver to decide the applicability of a path and calculate possible input values for
real execution.

The current implementation works only a subset of Erlang. Thus our main goal in the
future is to improve our implementation and extend the language coverage. After this,
we would like to improve the execution path selection algorithm based on the tested use
cases.
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1 Project background

Digital image processing [2, 4] deals with the manipulation of digital images. It is a subfield
of signals and systems, but the focus is particularly on images. The aim of this project
is to design and build a program, which can process digital images using pure functional
programming language. The input of the application is a digital image, which is processed
using various algorithms, and it creates a modified image as an output. Digital Image
Processing is widely used and it is popular among photographers, designers, graphic artists,
and other artists. The most famous example application is Adobe Photoshop [1], which is
used for image editing, creating compositions, and adding affects.

2 The PPM image format

The implemented application [3] gets a digital image as input and converts it into ap-
propriate data structure for future modifications. As an image is described with several
attributes, a new structure is created to store those attributes together and efficiently
move data through the processing pipeline. The most important image attribute is the
pixel, a list of RGB Pixel records. Each RGB pixel contains 3 integer values, which are
the intensity of following colors: Red, Green and Blue. These 3 integers can be used to
represent any color, while the collection of RGB pixels can be used to describe any image.

Digital images can be stored in various file formats, like JPG, PNG, BMP, PPM,
RAW and etc. Each file format has its own advantages and disadvantages. After several
experiments and tests, the PPM [5] image format was selected for this project. The PPM
(Portable Pixel Map) format is the lowest common denominator color image file format.
It is not famous for efficiency, as it is a very simple format, and it does not support image
compression. That is why storing large images in PPM takes much more memory than
in other formats. However, the simple structure makes it easier to read and process data
stored in PPM image, it does not require any decompression algorithms, and the pixel
data stays unchanged during I/O making it appropriate for the project.

The application reads data from PPM image file, converts it into an Image record, and
after applying the desired processing effects, the output is written again in a PPM image
file. Even though currently only PPM image I/O modules were implemented, it can be
easily extended to include other formats as well.
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3 Image processing

Image processing starts in the Processor module. The image is read using the loadFromPPM
function, and after modifications, the output is generated using the saveToPPM function.
Both functions are part of the PPM.IO module, which is responsible for handling the PPM
format [5]. The image modification is done with pixel-wise processors, i.e. image filters.
The filters iterate through the pixel list of the image, and they alter each RGB pixel
record individually. The Filters.Filter module contains the applyPixelFilter func-
tion, which is responsible for processing the image according to the given filter. Each filter
is a separate function, that takes the Pixel record, and it returns a new, reformed Pixel

record.

Figure 1: Base image – before modifications.

The example image, Figure 1, is used to show visual changes on the image. It is a
plain PPM image with 272190 pixels (645x422). Each pixel is described with 3 integers,
encoding the RGB colors with the max value of 255. In total, the input pixel stream
contains 816570 integers.

3.1 Grayscale filters

The first processing unit is the grayscale filter. It transforms the colored image into a black
and white picture. The colors are lost and everything is gray, but of course the objects on
the image are still distinguishable. The bright colors are changed with lighter tone of gray
than the dark colors, see Figure 2.

Figure 2: Simple, weighted and threshold grayscale images.

Unlike RGB colors, pixels in a grayscale image are represented with a single number,
indicating the intensity of gray. Therefore, each RGB value should be converted into one
number. As values in RGB already represent color intensity, we can take the average of
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all three as a grayscale value. This method is a simple conversion, which indeed gives us
a black and white image. However, the number representation does not accurately match
our eyes’ perception. Colors can be close to black in RGB color space, but for us, it might
be brighter. The weighted grayscale filter takes this fact into account to produce smoother
grayscale images. In this filter intensities of Red, Green and Blue are not considered equal
and a weighted average is calculated to compensate for the human perception.

The next filter is the threshold black and white filter that converts RGB colors of each
pixel into grayscale. Unlike the previous filters, instead of different variants of gray, the
result is either fully black or fully white pixel. The filter takes the threshold value and
it compares to the grascale value of the pixel. If the grayscale value is greater than the
threshold, it is considered to be black; if not, it is changed with white pixel. The resulting
picture may not look beautiful, but it can be useful to spot small details of the image.

3.2 Selective black and white filters

Another type of black and white filter is the selective filter. Such filters are popular in
photo editor programs, they allow you to select one or more colors that you want to keep
and everything else is turned into black and white, see Figure 3. Converting unmarked
pixels into grayscale can be done with above mentioned filters, but before that, it is needed
to mark pixels that are close to users’ specified color. For that, we require to calculate the
distance between pixels color and the specified color, and if its absolute value is less than
the predefined threshold, it should stay unchanged.

Figure 3: Selective grasycale filter omitting the yellow color.

3.3 Tint and light filters

The next filter is used to modify the color palette of an image. Tint filter is used to
increase or decrease specific color’s intensity. For example, increasing the intensity of red
in each RGB pixel, can make an image more ’reddish’. Colors are often used to put extra
information in the image; for example, if the color palette is closer to blue, it feels like
that photo was taken in a cold environment, while more ’yellowish’ colors give the feeling
of warmness, see Figure 4.

The last type of pixel filters presented here also interferes with the color palette, but in
a bit different way than the tint filter. If an image is too dark, the decreasing intensity of
each color can result in a brighter image, as in Figure 5. Likewise, increasing the intensity
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Figure 4: Images tinted with different colors.

of each RGB value can give us a darker image. The brightness filter uses this method to
change the light in the image.

Figure 5: Brighter and darker variations of the base image.

4 Summary

The image processing application was developed using functional programming. Several
image processing filters were integrated into the application. During testing and develop-
ment, functional programming was found to be suited for the image processing application
purposes. With the help of the functional paradigm, the code’s design remained small and
well-structured during the development. High-order functions, currying and lazy evalua-
tion made processing more efficient, especially chaining different filters and effects.

References

[1] Adobe Photoshop, www.adobe.com.

[2] Digital Image Processing Course, https://www.ft.unicamp.br/docentes/

magic/khoros/.

[3] Digital Image Processing Application, https://github.com/DerWaschbar/

Image-Processing.

[4] Maria M. P. Petrou, Costas Petrou, Image Processing: The Fundamental, 2nd
edition, Wiley, 2010.

[5] PPM Documentation, http://netpbm.sourceforge.net/doc/ppm.html.

Beka Grdzelishvili, Viktória Zsók

258



Actor Model based Distributed Communication in Golang

Jianhao Li and Viktória Zsók
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The actor model [6] is inherently distributed and parallel, and it can leverage the
concurrency to provide more efficiency for the distributed system [1]. The Golang pro-
gramming language [5] has powerful built-in concurrency constructs such as goroutines
and channels. Therefore, it is natural to think about implementing the actor model in
Golang.

In this paper, we introduce a specific version of the actor model based on a practical
implementation consideration.

1 Modified actor model

Now we will introduce a specific version of the actor model based on a practical implemen-
tation consideration. It follows the main philosophy of the actor model. However, some
modifications are done considering the practical implementation possibility, the efficiency,
and the features of the Golang programming environment.

This model aims to provide actor model-based distributed communication services for
more application domains such as: common distributed software, peer-to-peer software,
high-performance parallel software, and elastic cloud infrastructure.

Some new components are created in order to explain clearly the redesigned model:

1. User part and Communicator part

One actor program has its User part and Communicator part. These two parts be-
long to the same Golang program. The User part is the Golang program that needs
a distributed communication service. The Communicator part is the distributed
communication tool provided by this model. The User part makes decisions on the
behavior of the actor. The Communicator part is responsible for the mail mecha-
nisms that the distributed communication needs. The User part imports, configures
and starts the Communicator part at the beginning of the program, and it uses the
functions provided by the Communicator part, which itself will start new goroutines
when it begins.

2. Mail

The Mail is the communication object in the usual actor model. It is a more intuitive
collection of information in a specific format sent and received by actors.

3. Mail mechanism system and Mail network system.
The mail system includes two parts: the Mail mechanism system and the Mail

network system. The Mail network system uses lower communication techniques
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and provides interfaces that the Mail mechanism system needs.
The Mail mechanism system contains all the mechanisms related to the communi-
cation behavior of the actors, and it uses the interface provided by the Mail network

system. They are decoupled so that in case of upgrading the mail network system
with faster low-layer communication techniques, the whole mail system and the com-
munication behavior of the actor system will not be affected.

4. User mail queue and Communicator mail queue.

The User part of an actor can have several User mail queues, which are the final
destinations of the mails. The Communicator mail queue is the mail queue in the
Communicator part. For each actor there is only one, large Communicator queue.

5. Sending routing key and Receiving routing key.
The Sending routing key is the key provided by the mail sender. The Receiving

routing key is the routing key for each user mail queue. One actor can regis-
ter different User mail queues with different Receiving routing keys. The Mail

sender provides a Sending routing key. The Communicator part acts like the
AMQP 0-9-1 direct exchange [7], it routes the Mails from the Communicator mail

queue to different User mail queues based on the matching routing key.

6. Mail sender and Mail receiver.
The Mail sender is the actor sending the Mail, while the Mail receiver is the
actor receiving the Mail.

2 New features of the redesigned actor model

In the following, the main features of this new version of the actor model are given:
Independence. The Golang compiler compiles the program into machine code. A Golang
program does not need extra runtime environment like a virtual machine or an interpreter.
This project does not implement a shared runtime environment for the actors in the same
node, they only share the same operating system. Additionally, the actors in the same
node will use different ports for communication to offer more actor independence.
Built-in group mechanisms. This model organizes actors in groups with different au-
tomatic mail forwarding mechanisms. It enables the programmers to easily form special
groups with commonly needed mechanisms like group broadcasting and load balancing.
Easy to manage and monitor. This model provides management relations for actors,
in case the actor agreed to be managed and it has exported some management interfaces.
Whenever the manager actor sends a management mail, instead of being handled by the
user part itself, the communicator part will automatically report the status, or it will
be executing some other operations.
Efficiency. The mail network system is decoupled from the mail mechanism system to be
able to upgrade the efficiency by supporting faster low-level communication techniques.
Additionally, the mail mechanism system leverages the concurrency to provide more effi-
ciency.
User friendly. Programmers do not need to install and run the message brokers them-
selves. The user only needs to import the package and to use the methods inside. This
model provides more built-in mechanisms.
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Now we will introduce our modifications of the classical actor model:

1. Different actor relations
The usual actor model indicates that “No actor can be operated on, looked at, taken
apart or modified in any way except by sending a message to that actor requesting it
perform the operation itself.” [2] In our version, the actor model has different actor
relations: communication relation and management relation. The User part can
configure the Communicator part to agree to be managed, to provide a management
token, and to expose some management interfaces. The central management actor
can manage or query the actors on different nodes by sending management messages
with the token. After the Communicator part receives the management message,
it will automatically send a status message to the management actor. The User

part itself does not send status messages. In this model, we execute the actors in
an independent, distributed way. Managing (or monitoring) the actors is done in a
centralized way, in order to easily coordinate them.

2. Actor definition
The usual actor model indicates that “Every object is an actor; this includes messages
and numbers.” [2] However, in this modified model every program with a mail system
is an actor. The actor actually is a program, which means it can have its own
behaviors. The mail system can send, receive and handle the actor communications.

3. Concurrent mail routing and handling
The usual actor model indicates that “An actor can send many messages at the
same time but can only receive them one at a time. In other words the arrival order
is linear; while the structure of events is only partially ordered by the notion of
one event preceding another.” [2] The receiving process in this model starts when
the mail arrives at the communicator mail queue and ends when it arrives at the
user mail queue. Only one mail arrives at the same time to the communicator mail
queue. However, after the mail arrived, the mails are routed to the user mail queue
concurrently (if more CPUs are allowed to be used, then it is parallel). Therefore,
in this updated model we receive the mails in parallel.

4. Organize the acquaintances differently
The usual actor model indicates that “Actor can have a set of acquaintances, other
actors it knows about and can send messages to. This set can increase in time since
the actor may create new acquaintances, and it may also hear about them in messages
it receives. These are the only way the set of acquaintances can increase.” [2] In this
model, to reduce the User part which needs to be implemented by the programmer,
the Communicator part will provide more built-in mail forwarding mechanisms (the
group broadcast and load balance), which are needed by distributed systems in
general. To achieve that, we need to maintain more attributes of acquaintances in
an Acquaintance table which indicates the groups each acquaintance belongs to.
Additionally, we know about the type of the group by having a Group type table.
Different types of the group have different mechanisms. According to the Group type

table, the Communicator part will know how to forward the mail. According to
the acquaintance table, the Communicator part knows to whom the forwarding
should be done.
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3 Related works

Different from the RabbitMQ [8], in this project, the queue is kept by each actor itself
instead of the message broker. The routing is done by all the communicators themselves
instead of the broker. Although the RabbitMQ broker supports distributed clustering, it
is still not inherently distributed like in this project. It will be lighter for a peer-to-peer
system to use an inherently distributed communications tool. RabbitMQ needs a plugin [9]
to achieve load balance among queues on different nodes. However, in this model, the load
balance among different nodes can be easily achieved by forming a group of actors with
built-in load balance mechanisms.

Different from the CAF [4] and the Erlang [3], the actors in this project are more inde-
pendent by letting the ones in the same node not sharing the runtime environment. In CAF
and Erlang, actors leverage the concurrency and the distribution like in the usual actor
model. In this model, it is the goroutines inside the actors that leverage the concurrency
instead of the actors. The actor system is more focused on the efficient distributed commu-
nication among programs inside or outside of the same node with built-in communication
mechanisms. In this way the programmer can form actor groups with special mechanisms
(broadcasting group, load balancing, etc.), and can construct distributed systems easier.
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Abstract

Membrane systems (P systems) and reaction systems (R systems) are two uncon-
ventional and powerful computational paradigms based on the study of the structure
and functioning of living systems, in particular living cells. We first list the most im-
portant similarities and differences of the two models. Then we define a hybrid model
where the components of the P system are represented by R systems and demon-
strate that this new construct corresponds to particular variants of P systems. We
also suggest some research directions for future investigations.

1 Introduction

The concept of a membrane system, later also called a P system, was introduced by Gh.
Păun in order to develop a distributed model for computing that mimics architecture
and functioning of living cells [5]. Since 2000, the idea has been extensively explored and
has become rapidly developing field in bio-inspired computing (cellular computing) [6].
The main component of the generic variant of a P system is a membrane structure which
consists of membranes hierarchically embedded in the outermost skin membrane. Each
membrane encloses a region: a compartment, containing a multiset of objects and possibly
other membranes. The objects represent bio-chemical ingredients. Each region is associated
with a set of multiset-rewriting rules, to be applied to the objects in the region. The rules
can be of different types, they can modify the multisets of objects in the regions and/or
also can provide the possibility of transporting the objects from one region to another one.
For more details about P systems readers are encouraged to consult [6].

Reaction systems, also called R systems were introduced by A. Ehrenfeucht and G.
Rozenberg as a formal model of interactions between biochemical reactions; the reader
is referred to [4] for the original motivation. The main idea was to model the behavior
of biological systems where the functioning of a living cell consists of a huge number
of individual reactions that interact with each other. The interaction between individual
biochemical reactions takes place through their influence on each other, and this influence
happens through the mechanisms of facilitation and inhibition. The basic model defines
the possible evolution of the state of a reaction system according to a set of reactions. For
further details on reaction systems we refer to [4].

Both areas deal with populations of molecules (reactants) which evolve by means of
evolution rules (reactions). P systems operate with multisets of objects, while R systems
work with sets of objects. In case of R systems the emphasis is always on evolution, not on
computation, while in P systems’ theory computation is in the center of interest. R systems
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only focus on the presence or absence of the chemical species, and not on their amounts,
while in case of P systems the number of the same object is significant. For this, R systems
provide as a qualitative model, while P systems provide a quantitative model for the bio-
chemical processes. Further differences between the two models are the following. In case of
R systems, multiple reactions that have common reactants do not interfere. All reactions
that are enabled at a certain time step are performed simultaneously. Another feature
of reaction systems which makes them different from other bio-inspired computational
models, as for example P systems, is the lack of permanency: the current state of the
system consists of only products of those reactions that took place in the last time step.
Those reactants that were not involved in any reaction disappear from the system.

One interesting question is whether hybrid models, combinations of features of P sys-
tems and R systems, provide a new model for computation with features different from
features of P systems and R systems. One idea is that we replace the rule sets associ-
ated to the compartments of the P system with R systems and we allow these R systems
to communicate with the neighboring compartments by sending/receiving objects, i.e.
products. The concept of a communicating R system (cdcR system) with communicating
products or reactions was introduced and studied in [3]. The idea of P systems working
with symbol-objects without multiplicities was introduced and studied in [1].

2 Preliminaries

We recall a few elementary notions and notations that we will use in the sequel. An
alphabet is a finite and nonempty set. For an alphabet V , by V ∗ we denote the set
of all strings over V , including the empty string, denoted by λ. The set of nonempty
strings over V is denoted by V +. N is the notation for the set of natural numbers. Let
O be a set of objects. A multiset is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects from O and f : O → N is a mapping which assigns to
each object its multiplicity; if a /∈ V then f(a) = 0. The support of M = (V, f) is the
set supp(M) = {a ∈ V | f(a) ≥ 1}; if supp(M) is a finite set, then M is called a finite
multiset. A multiset M over the finite set of objects V can be represented by any string
w over the alphabet V with |w|a = f(a), a ∈ V , λ represents the empty multiset.

We first provide the notion of a standard membrane system from [6]. A P system (of
degree n) is a construct, Π = (O,µ,w1, ..., wn, R1, ..., Rn, iin, iout), where O is the alphabet
of objects, µ is a rooted tree, called the membrane structure (with n membranes; each node
corresponds to a region), w1, ..., wn, n ≥ 1, are multisets of objects over O, wi is the initial
multiset of objects present in region i, 1 ≤ i ≤ n, R1, ..., Rn, n ≥ 1, are finite sets of rules
associated with the regions of µ. The rules in Ri, 1 ≤ i ≤ n are of the form u → v, with
u ∈ O+ and v ∈ (O×{here, out, in})∗, where here, out, in are so-called target indications.
A pair (a, here) means that the object a remains in the same region, (b, out) means that
b leaves to the parent region, and (c, in) means that c leaves to a child region of the
considered region. Finally, iin, iout are the labels of input and output regions, respectively.
P systems work by transitions, i.e., by changing their configurations. A configuration of a P
system Π, see above, is an n-tuple c = (u1, . . . , un), where ui, 1 ≤ i ≤ n is a finite multiset
of objects over the set of objects O. A transition from configuration c to c′ = (u′1, . . . , u

′
n)

means that c′ is obtained from c by non-deterministic maximally parallel way of rule
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applications (see [5]). A computation in Π is a finite sequence of transitions in Π starting
from the initial configuration to a halting configuration, i.e., to a configuration where no
rule can be applied in any of the regions. Standard P systems are very powerful computing
devices, they are as powerful a Turing machines.

Now, we recall here some elementary notions about reaction systems from [4]. Let S
be an alphabet and finite nonempty set; S is called the background set. A reaction(in S)
is a triple a = (R, I, P ) where R, I, P are nonempty subsets of S such that R ∩ I = ∅. R
is the reactant set of a, I is the inhibitor set of a, P is the product set of a. R, I, P are
also denoted by Ra, Ia, Pa. We denote by rac(S) the set of all reactions in S. If T ⊆ S
and a ∈ rac(S), then a is enabled by T if Ra ⊆ T and Ia ∩ T = ∅, then the result set
of a on T, denoted by resa(T ), is defined by resa(T ) = Pa. If a is not enabled by T ,
then resa(T ) = ∅. If A is finite set of reactions, then the result of A on T is defined by
resA(T ) =

⋃
a∈A resa(T ). Then a reaction system is an ordered pair A = (S,A), where

S is a background set and A is a finite nonempty set of reactions over S. A reaction
system A also operate by transitions, i.e., by changing their states. The state sequence
of a reaction system A with initial state T is given by successive iterations of the result
function: (resnA(T ))n∈N = (T, resA(T ), res2A(T ), ...).

Next we define a hybrid model when both models work together.

3 R systems in P systems - a hybrid model

In this section, we introduce a new variant of P systems, called PR systems, where we
replace rules with reactions in the regions of the P system.

A PR system is a construct

Πr = (O,µ,w1, ..., wn, R1, ..., Rn, iout),

where everything remains same as in case of standard membrane system with very few
exceptions. In place of rules, we consider extended reactions, i.e. reaction where the prod-
ucts are associated with targets. So, R1, . . . , Rn, 1 ≤ i ≤ n, are finite sets of reactions
over O, Ri is associated to region i, 1 ≤ i ≤ n and each a in Rj , where 1 ≤ j ≤ n is of
the form a : (Ra, Ia,Πa), where Ra and Ia are nonempty subsets of O, Ra ∩ Ia = ∅, and
Πa ⊆ Pa × {in, out, here}, Pa is a nonempty subset of O. Ra, Ia, Πa are called the set of
reactants, the set of inhibitors, and the set of products with targets.

Examining the above model, the following statement can be proven.

Theorem 1 To any PR system a simulating P system with promoters and inhibitors can
be constructed.

The proof is based on the ideas in [2] combined with the ideas of [3]. In [2] it was shown
that to any R system A = (S,A) where A = {ai | 1 ≤ i} and ai = (Rai , Iai , Pai), 1 ≤ i ≤ n,
a simple P system with (sets of) promoters and (sets of) inhibitors, Π, can be constructed
such that Π simulates A. A simple P system has only one region, the skin region; a
P system with promoters and inhibitors are with rules which are associated promoters
and inhibitors, i.e., objects in the presence/absence of which the rule can be applied. We
construct the PR system in such way that in every regions we place rule set of a simple P
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system with promoters and inhibitors and we organize the communication of the objects
between the regions exactly in the same manner as it is done in communicating R systems
with communication by products.

Notice that the above results can be extended to tissue-like P systems as well, i.e. P
systems where the membrane structure is an arbitrary graph.

4 Conclusions

In this note, we provide a hybrid model called PR system and provided some basic state-
ments. There are number of possible research directions for this connection between P
systems and R systems. One would be to extend the model with property of membrane
creation or membrane division and study the power of these variants of PR systems. PR
systems where not objects but rules are communicated (like cdcR systems communicating
reactions) are of interest as well.
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In this paper, we introduce an analysis and error detection for P4 programs [10, 9],
which are developed in Portable Switch Architecture (PSA) [11]. This solution is an ex-
tension of our previous work [3, 4], in which an error detection method was presented for
simple P4 programs.

P4 is a domain-specific programming language to define the processing of network
packets in network devices. The main information with which these programs work is the
header information. P4 programs have three main parts: the parser , which describes the
reading of the input packet and gets the header information from it; the modifierpart ,
which modifies the header information; and the deparser , which creates the output packet
from the calculated headers. These programs have an uncommon program structure - the
match-action table - which is partially defined in the source, but it is filled with specific
data during runtime by an external controller, therefore the whole process can be hardly
checked with static analysis approaches because there will be holes in the contents of the
tables.

There are different approaches to analyze P4 programs. There are static analysis tools,
which concentrate the error detection: Assert-P4 [8] checks the correctness of given con-
ditions in annotated P4 sources by static analysis, and P4V [5] checks the satisfiability
of a formula, which describes the behaviour of the P4 program. All of them works with
the previous version of P4, which is the P414. There are solutions for the newer version -
P416 - for example BF4 [2], which can not only detect errors in the source, but it is able
to repair the code by manipulating the table contents and avoid the errors by it. There
are solutions, which do not use static analysis for example P4RL [1] does runtime verifi-
cation, therefore it can use runtime information. There is an approach, which is based on
the dataflow analysis [6] of the program and which uses the dataflow graph to check the
header usage.

Our analysis approach works only with the source code of P416 programs, and we
handle the special math-action tables as branches. Our solution does not only report
errors but suspicious cases too, which are cases, which may lead to error. These cases
can be caused by the usage of invalid header or uninitialized fields, and it can also report
the uncommon usage of packet drop. This error detection is defined for pipeline analysis,
which calculates the pre-and post-condition for the different parts of the program, and
analyzes these conditions.

This work is based on our previous results [3, 4], which describe an error detection of
a pipeline. The main idea is to calculate a Hoare-triple, where precondition is calculated
from the parser code - therefore it describes what kind of input header we would like to

1This work has been supported by the European Union, co-financed by the European Social Funk
(EFOP-3.6.3-VEKOP-16-2017-00002)
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work with; the postcondition is calculated from the source of deparser - so it describes
what kind of output header information we would like to forward to the network; and
from the modifier part we calculate the main program. Based on this triple, we can check
if our program starts from any initial state, it can reach one of the final states. If there is
an execution path, which can not reach then we can find a case to report. In this paper,
we would like to extend this idea to PSA structured programs too.

Figure 1: Packet processing paths [11]

The model of PSA can be seen in Figure 1. In PSA structured programs, there are
two pipelines, the ingress, and egress pipeline, which can be analyzed by our method
separately. In the figure, we can see the possible packet processing paths, we work with
four of them: CI2E, Resubmit, CE2E and Recirculate. All of them sign a connection point
between the pipelines, and they have a source and a destination. CI2E is the ”clone from
ingress to egress”, its source is the ingress deparser and destination is the egress parser.
The source of Resubmit is the ingress deparser and its destination is the ingress parser.
C2E2 is the ”clone from egress to egress”, where the source is the egress deparser and
destination is the egress parser. The source of the Recirculate is the egress parser, and
the destination of it is the ingress parser. We would like to check if these connections
are right, and we use the pre-and post-condition of the ingress and egress pipeline for
it. These conditions are calculated in the pipeline checking and we use them to check a
consequence for every connection point. Every consequence checks if the condition of the
destination is a consequence of the source, which is right if the condition of the source is
true then the condition of the destination is also true. To check the consequence, we can
change the expression of every consequence to a formula, where the consequence formula
is negated and that is conjugated with the source formula. This formula is unsatisfiable
if and only if the consequence is right. These expressions can be seen in Figure 2, where
FormulaSet |= Formula means the semantic consequence and the meaning of the PreI/E
and PostI/E are the pre- and the post-condition of the ingress/egress pipeline.

Path Consequence Formula

CI2E {PostI} |= PreE PostI ∧ ¬PreE
Resubmit {PostI} |= PreI PostI ∧ ¬PreI
CE2E {PostE} |= PreE PostE ∧ ¬PreE
Recirculate {PostE} |= PreI PostE ∧ ¬PreI

Figure 2: Consequence and formula for path checking

An example can be seen in Figure 3, where the conditions only contain the header name,
which should be valid. A real pre- and post-condition have a similar structure. The example
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contains three types of header: ethernet, ipv4 and myTunnel. The figure only shows the
formula, that should be checked to be unsatisfiable. In the case of CI2E and CE2E, it can
be easily seen the unsatisfiability is coming from the ethernet header, because in every
case of the source condition it should be valid, and the destination condition needs the
same, so we see it in a negated form, therefore both formula will be false in every possible
interpretation. In the case of Resubmit, the condition of the source contains two execution
paths. Both of them have a valid header ethernet, one of them has a valid ipv4, other has
a valid myTunnel. The condition of the destination needs an ethernet and ipv4, which
should be negated in the formula. We can see, in the first execution path of the source,
the formula could be unsatisfiable, but in the second execution path, there is a satisfiable
case, when ethernet and myTunnel is valid, but ipv4 is invalid. In this interpretation the
consequence is not right, therefore we could report it to be rechecked by the developer.

PreI = ethernet ∧ ipv4
PostI = (ethernet ∧ ipv4) ∨ (ethernet ∧myTunnel)
PreE = ethernet
PostE = ethernet ∧ ipv4 ∧myTunnel

CI2E: ((ethernet ∧ ipv4) ∨ (ethernet ∧myTunnel)) ∧ ¬ethernet
Resubmit: ((ethernet ∧ ipv4) ∨ (ethernet ∧myTunnel)) ∧ ¬(ethernet ∧ ipv4)
CE2E: ethernet ∧ ipv4 ∧myTunnel ∧ ¬ethernet
Recirculate: ethernet ∧ ipv4 ∧myTunnel ∧ ¬(ethernet ∧ ipv4)

Figure 3: Example path checking

This idea is being integrated into the P4Query [12], which is an analysis framework for
P4 programs, which is developed in a project of ELTE. Our goal with this program is to
make a useful tool for P4 developers from which they can get reports about their program
and its correctness. It has already contained the error checking for one pipeline, and it
can work with PSA structured programs too. For the unsatisfiability checking, we use the
Z3 Theorem Prover [7]. If the solver gives an interpretation, where the formula is true, it
means it is satisfiable, therefore there can be an execution path, where the consequence
will not be true. We will report these kinds of suspicious cases, with the model data,
which describes the possible execution path, so the developer can fix the source if this is
a problem.

Another supplementation of our previous work is to check the usage of the drop func-
tion, which means we would like to drop the packet. The function of the drop only set the
outputport metadata into a drop port value, which means we drop the packet, but during
the further runtime, it can set it to be not dropped. We would like to report this behaviour
too, and those cases, when more drop is used, while there is not any reset, because these
can be suspicious, so we would like to draw the attention to them, and the developer can
decide if they are correct or not.

Our pipeline checking can be extended by this checking too, by watching the drop
predicate in the conditions, and when we see a drop function, while the drop condition is
true, then we can see a multiple dropping. We can check if the port is changed after the
drop, and we can report that the drop was reset.

With these extensions, we would like to expand the possible error checking of P4
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programs, using static analysis, while only using the raw sources. We plan to refine the
checking in PSA programs, to be able to give a more proper report about it and a further
plan is to give refactoring ideas for the developer, and automatic solutions to reduce the
work after the report.
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Csanády, B., 187

Boda, L., 169
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Mihálykó, A., 95, 99
Molnár, A., 151
Molnár, B., 105, 111, 115,125, 125,129
Mukashaty, A., 115
Nagy, G. P., 41, 51
Nagy, Z. L., 47
Pach, P. P., 19
Palincza, R., 31
Pálfy, M., 23
Pálvölgyi, D., 73
Perczel, A., 231
Pituk, S., 55
Schulze, B., 83
Seifu, B., 129
Sethy, P. K., 263
Simon, P., 151
Svantnerné Sebestyén, G., 173
Sziklai, P., 37
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